cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239842 Numbers n such that the Eisenstein integer ((1-ω)^n+1)/(2-ω) has prime norm, where ω = - 1/2 + sqrt(-3)/2.

Original entry on oeis.org

5, 11, 31, 37, 47, 53, 97, 163, 167, 509, 877, 1061, 2027, 2293, 3011, 6803, 8423, 13627, 20047, 28411, 50221, 50993, 71453, 152809, 272141, 505823, 1353449
Offset: 1

Views

Author

Serge Batalov, Mar 27 2014

Keywords

Comments

These numbers are sometimes called Eisenstein-Mersenne cofactors EQ(n).
The p-th Eisenstein-Mersenne cofactor can be written as EQ(p) = (3^p + Legendre(3, p) * 3^((p + 1)/2) + 1)/7.
Following an idea of Harsh Aggarwal, some of these numbers have been discovered as by-products of the search for prime Eisenstein-Mersenne norms. The reason of that is the Aurifeuillan factorization of T(k) = 3^(3k) + 1 with k odd. These numbers can be written as T(k) = (3^k + 1)*EM(k)*EQ(k)*7, EM(k) is the norm of the Eisenstein-Mersenne (1-ω)^k-1, while EQ(k) is the norm of ((1-ω)^a[n]+1)/(2-ω).
These numbers have been proved prime only up to exponent a(19) = 20047.
Next term a(28) > 1500000.

Examples

			For n = 3: ((1-ω)^31+1)/(2-ω) is an Eisenstein prime because its norm, (3^31-3^16+1)/7 = 88239050462461, is prime.
		

Crossrefs

Cf. A125743 = Primes p such that (3^p - 3^((p+1)/2) + 1)/7 is prime.
Cf. A125744 = Primes p such that (3^p + 3^((p+1)/2) + 1)/7 is prime.
Cf. A066408 = Numbers n such that the Eisenstein integer has prime norm.
Cf. A124112 = Numbers n such that ((1+I)^n+1)/(2+I) is a Gaussian prime.

Programs

  • PARI
    forprime(n=3,2300,if(ispseudoprime((3^n+kronecker(3,n)*3^((n+1)/2)+1)/7),print1(n ", "))); /* Serge Batalov, Mar 29 2014 */