cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239858 T(n,k)=Number of nXk 0..3 arrays with no element equal to zero plus the sum of elements to its left or zero plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest or one plus the sum of the elements antidiagonally to its northeast, modulo 4.

Original entry on oeis.org

2, 2, 2, 4, 3, 4, 6, 9, 5, 6, 8, 12, 44, 4, 8, 14, 29, 78, 84, 5, 14, 20, 63, 255, 203, 130, 5, 20, 30, 100, 742, 1114, 484, 343, 6, 30, 48, 215, 1382, 3463, 4549, 1757, 685, 10, 48, 70, 468, 5647, 9963, 19065, 28184, 4979, 1704, 11, 70, 108, 785, 14755, 71695, 77212
Offset: 1

Views

Author

R. H. Hardin, Mar 28 2014

Keywords

Comments

Table starts
..2..2....4......6........8........14.........20..........30.........48
..2..3....9.....12.......29........63........100.........215........468
..4..5...44.....78......255.......742.......1382........5647......14755
..6..4...84....203.....1114......3463.......9963.......71695.....219708
..8..5..130....484.....4549.....19065......77212......970717....4024283
.14..5..343...1757....28184....176208.....937154....23072270..141040759
.20..6..685...4979...125255...1162638....9885999...421824199.5282952362
.30.10.1704..19850...860559..11924924..147826427.14757679494
.48.11.3977..68830..4802971.111900643.2030390429
.70.15.7958.207822.24477675.995175724

Examples

			Some solutions for n=4 k=4
..3..2..3..3....2..3..3..2....2..3..3..3....3..2..2..2....2..3..2..2
..2..1..1..2....3..1..1..3....3..1..1..2....2..1..0..0....3..1..1..0
..3..0..2..2....3..1..1..2....3..2..2..2....3..1..3..0....2..1..2..0
..3..2..0..0....2..3..0..2....2..3..0..0....2..3..3..3....2..0..0..3
		

Formula

Empirical for column k:
k=1: a(n) = a(n-2) +2*a(n-3)
k=2: a(n) = a(n-2) +a(n-5) for n>9
Empirical for row n:
n=1: a(n) = a(n-2) +2*a(n-3)
n=2: [order 17] for n>21