cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239871 Number of strict partitions of n having 1 more even part than odd, so that there is at least one ordering of the parts in which the even and odd parts alternate, and the first and last terms are even.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 1, 2, 1, 4, 1, 6, 1, 9, 2, 12, 3, 16, 6, 20, 10, 25, 17, 30, 26, 36, 40, 43, 57, 51, 81, 61, 110, 74, 148, 91, 193, 113, 250, 144, 316, 184, 397, 239, 491, 311, 603, 407, 732, 530, 885, 692, 1061, 895, 1268, 1155, 1508, 1478, 1790
Offset: 0

Views

Author

Clark Kimberling, Mar 29 2014

Keywords

Comments

Let c(n) be the number of strict partitions (that is, every part has multiplicity 1) of n having 1 more odd part than even, so that there is an ordering of parts for which the odd and even parts alternate and the first and last terms are odd. Then c(n) = a(n+1) for n >= 0.

Examples

			a(11) counts these 4 partitions:  812, 614, 632, 452.
		

Crossrefs

Column k=-1 of A240021.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2 or
          abs(t)>n, 0, `if`(n=0, 1, b(n, i-1, t)+
          `if`(i>n, 0, b(n-i, i-1, t+(2*irem(i, 2)-1)))))
        end:
    a:= n-> b(n$2, 1):
    seq(a(n), n=0..80);  # Alois P. Heinz, Apr 02 2014
  • Mathematica
    d[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
    p[n_] := p[n] = Select[d[n], Count[#, ?OddQ] == -1 + Count[#, ?EvenQ] &]; t =  Table[p[n], {n, 0, 20}]
    TableForm[t] (* shows the partitions *)
    u = Table[Length[p[n]], {n, 0, 70}]  (* A239871 *)
    (* Peter J. C. Moses, Mar 10 2014 *)
    b[n_, i_, t_] := b[n, i, t] = If[n > i*(i + 1)/2 || Abs[t] > n, 0, If[n == 0, 1, b[n, i - 1, t] + If[i > n, 0, b[n - i, i - 1, t + (2*Mod[i, 2] - 1)]]]]; a[n_] := b[n, n, 1]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Nov 16 2015, after Alois P. Heinz *)

Formula

a(n) = [x^n y^(-1)] Product_{i>=1} 1+x^i*y^(2*(i mod 2)-1). - Alois P. Heinz, Apr 03 2014