cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239881 Number of strict partitions of n having an ordering in which no parts of equal parity are juxtaposed.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 2, 5, 3, 7, 6, 10, 9, 13, 15, 18, 22, 23, 33, 31, 46, 41, 65, 55, 87, 73, 117, 99, 153, 132, 199, 177, 254, 236, 324, 313, 408, 412, 512, 540, 639, 701, 795, 904, 986, 1159, 1221, 1473, 1509, 1861, 1862, 2336, 2298, 2915, 2830, 3615, 3485
Offset: 0

Views

Author

Clark Kimberling, Mar 29 2014

Keywords

Comments

A strict partition is one in which every part has multiplicity 1.
a(n) = Sum_{k=-1..1} A240021(n,k). - Alois P. Heinz, Apr 02 2014

Examples

			a(12) counts these 9 partitions:  [12], [9,2,1], [3,8,1], [7,4,1], [7,2,3], [5,6,1], [6,3,2,1], [5,4,3], [5,4,1,2].
		

Crossrefs

Programs

  • Mathematica
    d[n_] := Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
    p[n_] := p[n] = Select[d[n], Abs[Count[#, ?OddQ] - Count[#, ?EvenQ]] <= 1 &]; t =  Table[p[n], {n, 0, 12}]
    TableForm[t] (* shows the partitions *)
    u = Table[Length[p[n]], {n, 0, 60}]  (* A239880 *)
    (* Peter J. C. Moses, Mar 10 2014 *)