cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A055505 Numerators in expansion of (1-x)^(-1/x)/e.

Original entry on oeis.org

1, 1, 11, 7, 2447, 959, 238043, 67223, 559440199, 123377159, 29128857391, 5267725147, 9447595434410813, 1447646915836493, 225037938358318573, 29911565062525361, 3651003047854884043877, 38950782815463986767
Offset: 0

Views

Author

N. J. A. Sloane, Jul 11 2000

Keywords

Comments

From Miklos Kristof, Nov 04 2007: (Start) This is also the sequence of numerators associated with expansion of (1+x)^(1/x).
(1 + x)^(1/x) = exp(1)*(1 - 1/2*x + 11/24*x^2 - 7/16*x^3 + 2447/5760*x^4 - 959/2304*x^5 + 238043/580608*x^6 - ...).
(1+x)^(1/x) = exp(log(1+x)/x) = exp(1)*exp(-x/2)*exp(x^2/3)*exp(x^3/4)*...
Let a(n) be this sequence, let b(n) be A055535. Then (1+x)^(1/x)=exp(1)*a(n)/b(n) x^n.
a(n)/b(n) = Sum_{i>=n} s(i,i-n)/i! where s(n,m) is a Stirling number of the first kind.
exp(1) = 1 + Sum_{i>=1} s(i,i)/i!, for the n=1 case.
a(1)/b(1) = 1/1 because 1+1/1!+1/2!+1/3!+1/4!+... = exp(1)
a(2)/b(2) = 1/2 because 1/2!+3/3!+6/4!+10/5!+... = 1/2*exp(1)
a(3)/b(3) = 11/24 because 2/3!+11/4!+35/5!+85/6!+... = 11/24*exp(1)
a(4)/b(4) = 7/16 because 6/4!+50/5!+225/6!+735/7!+... = 7/16*exp(1) (End)

Examples

			1+1/2*x+11/24*x^2+7/16*x^3+2447/5760*x^4+...
1, -1/2, 11/24, -7/16, 2447/5760, -959/2304, 238043/580608, -67223/165888, ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 293, Problem 11.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.3.1.

Crossrefs

Cf. A094638, A130534, A055535 (denominators).
See also A239897/A239898.
Cf. A276977.

Programs

  • Maple
    T:= proc(u) local k, l; add( Stirling1(u+k,k)*((u+k)!)^(-1)* add( (-1)^l/l!, l=0..u-k), k=0..u); end;
  • Mathematica
    a[n_] := Sum[StirlingS1[n+k, k]/(n+k)!*Sum[(-1)^j/j!, {j, 0, n-k}], {k, 0, n}]; Table[a[n] // Numerator // Abs, {n, 0, 17}] (* Jean-François Alcover, Mar 04 2014, after Maple *)
    Numerator[((1-x)^(-1/x)/E + O[x]^20)[[3]]] (* or *)
    Numerator[Table[Sum[StirlingS1[n+k, k] Subfactorial[n-k] Binomial[2n, n+k], {k, 0, n}] (-1)^n/(2n)!, {n, 0, 10}]] (* Vladimir Reshetnikov, Sep 23 2016 *)

Formula

See Maple line for formula.

Extensions

Edited by N. J. A. Sloane, Jul 01 2008 at the suggestion of R. J. Mathar

A239898 Bisection of A055535.

Original entry on oeis.org

1, 24, 5760, 580608, 1393459200, 73574645760, 24103053950976000, 578473294823424000, 9440684171518279680000, 271211974879377138647040000, 3579998068407778230140928000000, 282308419108727654719684608000000, 258955866680053703121272297226240000000
Offset: 0

Views

Author

N. J. A. Sloane, Apr 05 2014

Keywords

Comments

Based on a very good approximation to e.

Examples

			Denominators of the fractions 1, 11/24, 2447/5760, 238043/580608, ... (see A055505/A055535).
		

Crossrefs

Cf. A055505/A055535, A239897 (numerators).

Extensions

More terms from Amiram Eldar, May 08 2024
Showing 1-2 of 2 results.