A239904 a(n) = n - wt(n) + (number of times 11 appears in binary expansion of n).
0, 0, 1, 2, 3, 3, 5, 6, 7, 7, 8, 9, 11, 11, 13, 14, 15, 15, 16, 17, 18, 18, 20, 21, 23, 23, 24, 25, 27, 27, 29, 30, 31, 31, 32, 33, 34, 34, 36, 37, 38, 38, 39, 40, 42, 42, 44, 45, 47, 47, 48, 49, 50, 50, 52, 53, 55, 55, 56, 57, 59, 59, 61, 62, 63, 63, 64, 65, 66, 66, 68, 69, 70, 70, 71, 72, 74, 74, 76
Offset: 0
Links
- Gheorghe Coserea, Table of n, a(n) for n = 0..10000
- Helmut Prodinger, Generalizing the sum of digits function, SIAM J. Algebraic Discrete Methods 3 (1982), no. 1, 35--42. MR0644955 (83f:10009).
Programs
-
Maple
A000120 := proc(n) add(i, i=convert(n, base, 2)) end: # A014081: cn := proc(v, k) local n, s, nn, i, j, som, kk; som := 0; kk := convert(cat(seq(1, j = 1 .. k)),string); n := convert(v, binary); s := convert(n, string); nn := length(s); for i to nn - k + 1 do if substring(s, i .. i + k - 1) = kk then som := som + 1 fi od; som; end; [seq(n-A000120(n)+cn(n,2), n=0..100)];
-
Mathematica
cn[n_, k_] := Count[Partition[IntegerDigits[n, 2], k, 1], Table[1, {k}]]; Table[n - DigitCount[n, 2, 1] + cn[n, 2], {n, 0, 78}] (* Michael De Vlieger, Sep 18 2015 *)
-
PARI
a(n) = n - hammingweight(n) + hammingweight(bitand(n, n>>1)); vector(79, i, a(i-1)) \\ Gheorghe Coserea, Sep 24 2015
-
Python
def A239904(n): return n-n.bit_count()+(n&(n>>1)).bit_count() # Chai Wah Wu, Feb 12 2023
Comments