cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239904 a(n) = n - wt(n) + (number of times 11 appears in binary expansion of n).

Original entry on oeis.org

0, 0, 1, 2, 3, 3, 5, 6, 7, 7, 8, 9, 11, 11, 13, 14, 15, 15, 16, 17, 18, 18, 20, 21, 23, 23, 24, 25, 27, 27, 29, 30, 31, 31, 32, 33, 34, 34, 36, 37, 38, 38, 39, 40, 42, 42, 44, 45, 47, 47, 48, 49, 50, 50, 52, 53, 55, 55, 56, 57, 59, 59, 61, 62, 63, 63, 64, 65, 66, 66, 68, 69, 70, 70, 71, 72, 74, 74, 76
Offset: 0

Views

Author

N. J. A. Sloane, Apr 06 2014

Keywords

Comments

This is G_{2, 1/4}(n) in Prodinger's notation.

Crossrefs

Programs

  • Maple
    A000120 := proc(n) add(i, i=convert(n, base, 2)) end:
    # A014081:
    cn := proc(v, k) local n, s, nn, i, j, som, kk;
    som := 0;
    kk := convert(cat(seq(1, j = 1 .. k)),string);
    n := convert(v, binary);
    s := convert(n, string);
    nn := length(s);
    for i to nn - k + 1 do
    if substring(s, i .. i + k - 1) = kk then som := som + 1 fi od;
    som; end;
    [seq(n-A000120(n)+cn(n,2), n=0..100)];
  • Mathematica
    cn[n_, k_] := Count[Partition[IntegerDigits[n, 2], k, 1], Table[1, {k}]]; Table[n - DigitCount[n, 2, 1] + cn[n, 2], {n, 0, 78}] (* Michael De Vlieger, Sep 18 2015 *)
  • PARI
    a(n) = n - hammingweight(n) + hammingweight(bitand(n, n>>1));
    vector(79, i, a(i-1))  \\ Gheorghe Coserea, Sep 24 2015
    
  • Python
    def A239904(n): return n-n.bit_count()+(n&(n>>1)).bit_count() # Chai Wah Wu, Feb 12 2023

Formula

a(n) = n - A000120(n) + A014081(n).