A239909 Arises from a construction of equiangular lines in complex space of dimension 2.
1, 1, 2, 3, 5, 9, 15, 26, 45, 77, 133, 229, 394, 679, 1169, 2013, 3467, 5970, 10281, 17705, 30489, 52505, 90418, 155707, 268141, 461761, 795191, 1369386, 2358197, 4061013, 6993405, 12043229, 20739450, 35715071, 61504345, 105915637, 182395603, 314100514
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- G. McConnell, Some non-standard ways to generate SIC-POVMs in dimensions 2 and 3, arXiiv preprint arXiv:1402.7330, 2014, p. 4.
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,-1).
Crossrefs
Cf. A116732.
Programs
-
Magma
I:=[1,1,2,3]; [n le 4 select I[n] else Self(n-1)+Self(n-2)+Self(n-3)-Self(n-4): n in [1..50]];
-
Mathematica
LinearRecurrence[{1, 1, 1, -1}, {1, 1, 2, 3}, 40] (* or *) CoefficientList[Series[(1 - x^3)/(x^4 - x^3 - x^2 - x + 1), {x, 0, 100}], x] (* Vincenzo Librandi, Apr 09 2014 *)
Formula
From Vincenzo Librandi Apr 09 2014: (Start)
G.f.: x*(1-x^3)/(x^4-x^3-x^2-x+1).
a(n) = a(n-1) + a(n-2) + a(n-3) - a(n-4) for n>4.
a(n) = a(n-1) + 2*a(n-3) + A116732(n-5) for n>4. (End)
Comments