cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239909 Arises from a construction of equiangular lines in complex space of dimension 2.

Original entry on oeis.org

1, 1, 2, 3, 5, 9, 15, 26, 45, 77, 133, 229, 394, 679, 1169, 2013, 3467, 5970, 10281, 17705, 30489, 52505, 90418, 155707, 268141, 461761, 795191, 1369386, 2358197, 4061013, 6993405, 12043229, 20739450, 35715071, 61504345, 105915637, 182395603, 314100514
Offset: 1

Views

Author

N. J. A. Sloane, Apr 09 2014

Keywords

Comments

a(n+2) is the number of binary words of length n in which every run of zeros has length congruent to 1 modulo 3. - Ira M. Gessel, Jan 22 2025

Crossrefs

Cf. A116732.

Programs

  • Magma
    I:=[1,1,2,3]; [n le 4 select I[n] else Self(n-1)+Self(n-2)+Self(n-3)-Self(n-4): n in [1..50]];
  • Mathematica
    LinearRecurrence[{1, 1, 1, -1}, {1, 1, 2, 3}, 40] (* or *) CoefficientList[Series[(1 - x^3)/(x^4 - x^3 - x^2 - x + 1), {x, 0, 100}], x] (* Vincenzo Librandi, Apr 09 2014 *)

Formula

From Vincenzo Librandi Apr 09 2014: (Start)
G.f.: x*(1-x^3)/(x^4-x^3-x^2-x+1).
a(n) = a(n-1) + a(n-2) + a(n-3) - a(n-4) for n>4.
a(n) = a(n-1) + 2*a(n-3) + A116732(n-5) for n>4. (End)