cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A275518 Number of simplices in corner-cut triangulation of the n-cube.

Original entry on oeis.org

1, 2, 5, 16, 67, 364, 2445, 19296, 173015, 1728604, 19011049, 228124384, 2965598547, 41518338684, 622774990133, 9964399645504, 169394793547567, 3049106282938684, 57933019373868897, 1158660387473183616, 24331868136927943019, 535301099012395872028
Offset: 1

Views

Author

R. J. Mathar, Jul 31 2016

Keywords

Comments

This corrects the value of a(10) in A239911 published by Sallee in Discr. Math. 40. The correct value is for example given by Lee.

Crossrefs

Programs

  • Maple
    p := proc(d,x)
        add( x^i/i!,i=0..d) ;
    end proc:
    A275518 := proc(d)
        d!*(p(d,2)/2-p(d,1))+2^(d-1)-d!/2+1 ;
    end proc:
    seq(A275518(d),d=1..18) ;
  • Mathematica
    p[d_, x_] := Sum[x^i/i!, {i, 0, d}];
    A275518[d_] := d!*(p[d, 2]/2 - p[d, 1]) + 2^(d - 1) - d!/2 + 1;
    Table[A275518[d], {d, 1, 18}] (* Jean-François Alcover, Sep 06 2023, after Maple program *)
  • PARI
    a(n) = 1 + 2^(n-1) - n! + n!*sum(i=1, n, (2^(i-1)-1)/i!) \\ Andrew Howroyd, Sep 06 2023

Formula

a(n) = 1 + 2^(n-1) - n! + n!*Sum_{i=1..n} (2^(i-1)-1)/i!. - Andrew Howroyd, Sep 06 2023, after Maple program

Extensions

Terms a(19) and beyond from Andrew Howroyd, Sep 06 2023
Showing 1-1 of 1 results.