cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239926 3^(p-1)-2^(p+1) for primes p > 3.

Original entry on oeis.org

17, 473, 54953, 515057, 42784577, 386371913, 31364282393, 22875718713137, 205886837127353, 150094360419092177, 12157661061010417697, 109418971539326314793, 8862937838177524385273, 6461081871212274789450257, 4710128696093323330314756713
Offset: 1

Views

Author

Vincenzo Librandi, Jun 17 2014

Keywords

Comments

3^(p-1)-2^(p+1) can be written as (3^((p-1)/2)-2^((p+1)/2))*(3^((p-1)/2)+2^((p+1)/2)). Since 3^((p-1)/2)-2^((p+1)/2) > 1 for p > 5, these numbers are all composite after 17 = (3^2-2^3)*(3^2+2^3).

Crossrefs

Cf. A000040, A003063, A135171 (numbers of the form 3^p-2^p with p prime), A214091 (supersequence).

Programs

  • Magma
    [3^(p-1)-2^(p+1): p in PrimesInInterval(4,100)];
  • Mathematica
    Table[3^(Prime[n] - 1) - 2^(Prime[n] + 1), {n, 3, 100}]