cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239927 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength k such that the area between the x-axis and the path is n (n>=0; 0<=k<=n).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 3, 0, 1, 0, 0, 0, 1, 0, 4, 0, 1, 0, 0, 0, 0, 3, 0, 5, 0, 1, 0, 0, 0, 1, 0, 6, 0, 6, 0, 1, 0, 0, 0, 0, 3, 0, 10, 0, 7, 0, 1, 0, 0, 0, 0, 0, 7, 0, 15, 0, 8, 0, 1, 0, 0, 0, 0, 2, 0, 14, 0, 21, 0, 9, 0, 1, 0, 0, 0, 0, 0, 7, 0, 25, 0, 28, 0, 10, 0, 1, 0, 0, 0, 0, 1, 0, 17, 0, 41, 0, 36, 0, 11, 0, 1
Offset: 0

Views

Author

Joerg Arndt, Mar 29 2014

Keywords

Comments

Triangle A129182 transposed.
Column sums give the Catalan numbers (A000108).
Row sums give A143951.
Sums along falling diagonals give A005169.
T(4n,2n) = A240008(n). - Alois P. Heinz, Mar 30 2014

Examples

			Triangle begins:
00:  1;
01:  0, 1;
02:  0, 0, 1;
03:  0, 0, 0, 1;
04:  0, 0, 1, 0, 1;
05:  0, 0, 0, 2, 0, 1;
06:  0, 0, 0, 0, 3, 0, 1;
07:  0, 0, 0, 1, 0, 4, 0, 1;
08:  0, 0, 0, 0, 3, 0, 5, 0, 1;
09:  0, 0, 0, 1, 0, 6, 0, 6, 0, 1;
10:  0, 0, 0, 0, 3, 0, 10, 0, 7, 0, 1;
11:  0, 0, 0, 0, 0, 7, 0, 15, 0, 8, 0, 1;
12:  0, 0, 0, 0, 2, 0, 14, 0, 21, 0, 9, 0, 1;
13:  0, 0, 0, 0, 0, 7, 0, 25, 0, 28, 0, 10, 0, 1;
14:  0, 0, 0, 0, 1, 0, 17, 0, 41, 0, 36, 0, 11, 0, 1;
15:  0, 0, 0, 0, 0, 5, 0, 35, 0, 63, 0, 45, 0, 12, 0, 1;
16:  0, 0, 0, 0, 1, 0, 16, 0, 65, 0, 92, 0, 55, 0, 13, 0, 1;
17:  0, 0, 0, 0, 0, 5, 0, 40, 0, 112, 0, 129, 0, 66, 0, 14, 0, 1;
18:  0, 0, 0, 0, 0, 0, 16, 0, 86, 0, 182, 0, 175, 0, 78, 0, 15, 0, 1;
19:  0, 0, 0, 0, 0, 3, 0, 43, 0, 167, 0, 282, 0, 231, 0, 91, 0, 16, 0, 1;
20:  0, 0, 0, 0, 0, 0, 14, 0, 102, 0, 301, 0, 420, 0, 298, 0, 105, 0, 17, 0, 1;
...
Column k=4 corresponds to the following 14 paths (dots denote zeros):
#:         path              area   steps (Dyck word)
01:  [ . 1 . 1 . 1 . 1 . ]     4     + - + - + - + -
02:  [ . 1 . 1 . 1 2 1 . ]     6     + - + - + + - -
03:  [ . 1 . 1 2 1 . 1 . ]     6     + - + + - - + -
04:  [ . 1 . 1 2 1 2 1 . ]     8     + - + + - + - -
05:  [ . 1 . 1 2 3 2 1 . ]    10     + - + + + - - -
06:  [ . 1 2 1 . 1 . 1 . ]     6     + + - - + - + -
07:  [ . 1 2 1 . 1 2 1 . ]     8     + + - - + + - -
08:  [ . 1 2 1 2 1 . 1 . ]     8     + + - + - - + -
09:  [ . 1 2 1 2 1 2 1 . ]    10     + + - + - + - -
10:  [ . 1 2 1 2 3 2 1 . ]    12     + + - + + - - -
11:  [ . 1 2 3 2 1 . 1 . ]    10     + + + - - - + -
12:  [ . 1 2 3 2 1 2 1 . ]    12     + + + - - + - -
13:  [ . 1 2 3 2 3 2 1 . ]    14     + + + - + - - -
14:  [ . 1 2 3 4 3 2 1 . ]    16     + + + + - - - -
There are no paths with weight < 4, one with weight 4, none with weight 5, 3 with weight 6, etc., therefore column k=4 is
[0, 0, 0, 0, 1, 0, 3, 0, 3, 0, 3, 0, 2, 0, 1, 0, 1, 0, 0, 0, ...].
Row n=8 is [0, 0, 0, 0, 3, 0, 5, 0, 1], the corresponding paths of weight=8 are:
Semilength 4:
  [ . 1 . 1 2 1 2 1 . ]
  [ . 1 2 1 . 1 2 1 . ]
  [ . 1 2 1 2 1 . 1 . ]
Semilength 6:
  [ . 1 . 1 . 1 . 1 . 1 2 1 . ]
  [ . 1 . 1 . 1 . 1 2 1 . 1 . ]
  [ . 1 . 1 . 1 2 1 . 1 . 1 . ]
  [ . 1 . 1 2 1 . 1 . 1 . 1 . ]
  [ . 1 2 1 . 1 . 1 . 1 . 1 . ]
Semilength 8:
  [ . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . ]
		

Crossrefs

Sequences obtained by particular choices for x and y in the g.f. F(x,y) are: A000108 (F(1, x)), A143951 (F(x, 1)), A005169 (F(sqrt(x), sqrt(x))), A227310 (1+x*F(x, x^2), also 2-1/F(x, 1)), A239928 (F(x^2, x)), A052709 (x*F(1,x+x^2)), A125305 (F(1, x+x^3)), A002212 (F(1, x/(1-x))).
Cf. A129181.

Programs

  • Maple
    b:= proc(x, y, k) option remember;
          `if`(y<0 or y>x or k<0, 0, `if`(x=0, `if`(k=0, 1, 0),
           b(x-1, y-1, k-y+1/2)+ b(x-1, y+1, k-y-1/2)))
        end:
    T:= (n, k)-> b(2*k, 0, n):
    seq(seq(T(n, k), k=0..n), n=0..20);  # Alois P. Heinz, Mar 29 2014
  • Mathematica
    b[x_, y_, k_] := b[x, y, k] = If[y<0 || y>x || k<0, 0, If[x == 0, If[k == 0, 1, 0], b[x-1, y-1, k-y+1/2] + b[x-1, y+1, k-y-1/2]]]; T[n_, k_] := b[2*k, 0, n]; Table[ Table[T[n, k], {k, 0, n}], {n, 0, 20}] // Flatten (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)
  • PARI
    rvec(V) = { V=Vec(V); my(n=#V); vector(n, j, V[n+1-j] ); }
    print_triangle(V)= { my( N=#V ); for(n=1, N, print( rvec( V[n]) ) ); }
    N=20; x='x+O('x^N);
    F(x,y, d=0)=if (d>N, 1, 1 / (1-x*y * F(x, x^2*y, d+1) ) );
    v= Vec( F(x,y) );
    print_triangle(v)

Formula

G.f.: F(x,y) satisfies F(x,y) = 1 / (1 - x*y * F(x, x^2*y) ).
G.f.: 1/(1 - y*x/(1 - y*x^3/(1 - y*x^5/(1 - y*x^7/(1 - y*x^9/( ... )))))).