A239927 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength k such that the area between the x-axis and the path is n (n>=0; 0<=k<=n).
1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 3, 0, 1, 0, 0, 0, 1, 0, 4, 0, 1, 0, 0, 0, 0, 3, 0, 5, 0, 1, 0, 0, 0, 1, 0, 6, 0, 6, 0, 1, 0, 0, 0, 0, 3, 0, 10, 0, 7, 0, 1, 0, 0, 0, 0, 0, 7, 0, 15, 0, 8, 0, 1, 0, 0, 0, 0, 2, 0, 14, 0, 21, 0, 9, 0, 1, 0, 0, 0, 0, 0, 7, 0, 25, 0, 28, 0, 10, 0, 1, 0, 0, 0, 0, 1, 0, 17, 0, 41, 0, 36, 0, 11, 0, 1
Offset: 0
Examples
Triangle begins: 00: 1; 01: 0, 1; 02: 0, 0, 1; 03: 0, 0, 0, 1; 04: 0, 0, 1, 0, 1; 05: 0, 0, 0, 2, 0, 1; 06: 0, 0, 0, 0, 3, 0, 1; 07: 0, 0, 0, 1, 0, 4, 0, 1; 08: 0, 0, 0, 0, 3, 0, 5, 0, 1; 09: 0, 0, 0, 1, 0, 6, 0, 6, 0, 1; 10: 0, 0, 0, 0, 3, 0, 10, 0, 7, 0, 1; 11: 0, 0, 0, 0, 0, 7, 0, 15, 0, 8, 0, 1; 12: 0, 0, 0, 0, 2, 0, 14, 0, 21, 0, 9, 0, 1; 13: 0, 0, 0, 0, 0, 7, 0, 25, 0, 28, 0, 10, 0, 1; 14: 0, 0, 0, 0, 1, 0, 17, 0, 41, 0, 36, 0, 11, 0, 1; 15: 0, 0, 0, 0, 0, 5, 0, 35, 0, 63, 0, 45, 0, 12, 0, 1; 16: 0, 0, 0, 0, 1, 0, 16, 0, 65, 0, 92, 0, 55, 0, 13, 0, 1; 17: 0, 0, 0, 0, 0, 5, 0, 40, 0, 112, 0, 129, 0, 66, 0, 14, 0, 1; 18: 0, 0, 0, 0, 0, 0, 16, 0, 86, 0, 182, 0, 175, 0, 78, 0, 15, 0, 1; 19: 0, 0, 0, 0, 0, 3, 0, 43, 0, 167, 0, 282, 0, 231, 0, 91, 0, 16, 0, 1; 20: 0, 0, 0, 0, 0, 0, 14, 0, 102, 0, 301, 0, 420, 0, 298, 0, 105, 0, 17, 0, 1; ... Column k=4 corresponds to the following 14 paths (dots denote zeros): #: path area steps (Dyck word) 01: [ . 1 . 1 . 1 . 1 . ] 4 + - + - + - + - 02: [ . 1 . 1 . 1 2 1 . ] 6 + - + - + + - - 03: [ . 1 . 1 2 1 . 1 . ] 6 + - + + - - + - 04: [ . 1 . 1 2 1 2 1 . ] 8 + - + + - + - - 05: [ . 1 . 1 2 3 2 1 . ] 10 + - + + + - - - 06: [ . 1 2 1 . 1 . 1 . ] 6 + + - - + - + - 07: [ . 1 2 1 . 1 2 1 . ] 8 + + - - + + - - 08: [ . 1 2 1 2 1 . 1 . ] 8 + + - + - - + - 09: [ . 1 2 1 2 1 2 1 . ] 10 + + - + - + - - 10: [ . 1 2 1 2 3 2 1 . ] 12 + + - + + - - - 11: [ . 1 2 3 2 1 . 1 . ] 10 + + + - - - + - 12: [ . 1 2 3 2 1 2 1 . ] 12 + + + - - + - - 13: [ . 1 2 3 2 3 2 1 . ] 14 + + + - + - - - 14: [ . 1 2 3 4 3 2 1 . ] 16 + + + + - - - - There are no paths with weight < 4, one with weight 4, none with weight 5, 3 with weight 6, etc., therefore column k=4 is [0, 0, 0, 0, 1, 0, 3, 0, 3, 0, 3, 0, 2, 0, 1, 0, 1, 0, 0, 0, ...]. Row n=8 is [0, 0, 0, 0, 3, 0, 5, 0, 1], the corresponding paths of weight=8 are: Semilength 4: [ . 1 . 1 2 1 2 1 . ] [ . 1 2 1 . 1 2 1 . ] [ . 1 2 1 2 1 . 1 . ] Semilength 6: [ . 1 . 1 . 1 . 1 . 1 2 1 . ] [ . 1 . 1 . 1 . 1 2 1 . 1 . ] [ . 1 . 1 . 1 2 1 . 1 . 1 . ] [ . 1 . 1 2 1 . 1 . 1 . 1 . ] [ . 1 2 1 . 1 . 1 . 1 . 1 . ] Semilength 8: [ . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . ]
Links
- Joerg Arndt and Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(x, y, k) option remember; `if`(y<0 or y>x or k<0, 0, `if`(x=0, `if`(k=0, 1, 0), b(x-1, y-1, k-y+1/2)+ b(x-1, y+1, k-y-1/2))) end: T:= (n, k)-> b(2*k, 0, n): seq(seq(T(n, k), k=0..n), n=0..20); # Alois P. Heinz, Mar 29 2014
-
Mathematica
b[x_, y_, k_] := b[x, y, k] = If[y<0 || y>x || k<0, 0, If[x == 0, If[k == 0, 1, 0], b[x-1, y-1, k-y+1/2] + b[x-1, y+1, k-y-1/2]]]; T[n_, k_] := b[2*k, 0, n]; Table[ Table[T[n, k], {k, 0, n}], {n, 0, 20}] // Flatten (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)
-
PARI
rvec(V) = { V=Vec(V); my(n=#V); vector(n, j, V[n+1-j] ); } print_triangle(V)= { my( N=#V ); for(n=1, N, print( rvec( V[n]) ) ); } N=20; x='x+O('x^N); F(x,y, d=0)=if (d>N, 1, 1 / (1-x*y * F(x, x^2*y, d+1) ) ); v= Vec( F(x,y) ); print_triangle(v)
Formula
G.f.: F(x,y) satisfies F(x,y) = 1 / (1 - x*y * F(x, x^2*y) ).
G.f.: 1/(1 - y*x/(1 - y*x^3/(1 - y*x^5/(1 - y*x^7/(1 - y*x^9/( ... )))))).
Comments