A239930 Number of distinct quarter-squares dividing n.
1, 2, 1, 3, 1, 3, 1, 3, 2, 2, 1, 5, 1, 2, 1, 4, 1, 4, 1, 4, 1, 2, 1, 5, 2, 2, 2, 3, 1, 4, 1, 4, 1, 2, 1, 7, 1, 2, 1, 4, 1, 4, 1, 3, 2, 2, 1, 6, 2, 3, 1, 3, 1, 4, 1, 4, 1, 2, 1, 7, 1, 2, 2, 5, 1, 3, 1, 3, 1, 2, 1, 8, 1, 2, 2, 3, 1, 3, 1, 5, 3, 2, 1, 6, 1, 2, 1, 3, 1, 6, 1, 3, 1, 2, 1, 6, 1, 3, 2, 6, 1, 3, 1, 3, 1, 2, 1, 7, 1, 3
Offset: 1
Keywords
Examples
For n = 12 the quarter-squares <= 12 are [0, 0, 1, 2, 4, 6, 9, 12]. There are five quarter-squares that divide 12; they are [1, 2, 4, 6, 12], so a(12) = 5.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Wikipedia, Table of divisors.
Crossrefs
Programs
-
Haskell
a239930 = sum . map a240025 . a027750_row -- Reinhard Zumkeller, Jul 05 2014
-
Maple
isA002620 := proc(n) local k,qsq ; for k from 0 do qsq := floor(k^2/4) ; if n = qsq then return true; elif qsq > n then return false; end if; end do: end proc: A239930 := proc(n) local a,d ; a :=0 ; for d in numtheory[divisors](n) do if isA002620(d) then a:= a+1 ; end if; end do: a; end proc: # R. J. Mathar, Jul 03 2014
-
Mathematica
qsQ[n_] := AnyTrue[Range[Ceiling[2 Sqrt[n]]], n == Floor[#^2/4]&]; a[n_] := DivisorSum[n, Boole[qsQ[#]]&]; Array[a, 110] (* Jean-François Alcover, Feb 12 2018 *)
-
PARI
a(n) = sumdiv(n, d, issquare(d) + issquare(4*d + 1)); \\ Amiram Eldar, Dec 31 2023
Formula
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2) + 1 = A013661 + 1 = 2.644934... . - Amiram Eldar, Dec 31 2023
Comments