A239936 Least k > 0 such that p(k)+q(n) is prime, where p(n) is the number of partitions of n and q(n) is the number of strict partitions of n.
1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 2, 1, 1, 2, 4, 3, 1, 4, 3, 3, 10, 3, 4, 5, 2, 1, 1, 1, 6, 5, 5, 1, 6, 2, 4, 1, 12, 1, 15, 13, 1, 3, 5, 4, 4, 1, 5, 5, 1, 2, 1, 12, 49, 1, 1, 2, 6, 6, 3, 14, 3, 3, 3, 6, 6, 16, 13, 16, 11, 1, 1, 4, 5, 3, 12, 25
Offset: 0
Keywords
Examples
a(5)=2 since q(5)+p(2)=3+2=5 is prime but q(5)+p(1)=4 is composite.
Links
- Sean A. Irvine, Table of n, a(n) for n = 0..9999
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014-2016. See Conjecture 4.1(ii).
Programs
-
Mathematica
a[n_] := For[k = 1, True, k++, If[PrimeQ[PartitionsP[k] + PartitionsQ[n]], Return[k]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 19 2019 *)
Comments