A239735 Least number k such that n*k^n +/- 1 are twin primes, or a(n) = 0 if no such number exists.
4, 3, 4, 1, 570, 1, 1464, 54, 60, 14025, 1932, 1, 7194, 15, 3612, 0, 4746, 1, 540, 150, 7060, 138, 80094, 6160, 33480, 93135, 0, 366618, 26058, 1, 90510, 16836, 9824, 418875, 57246, 0, 182394, 64077, 14178, 943410, 36078, 1, 314520, 15870, 194942, 15044700, 241944, 3871, 308730
Offset: 1
Keywords
Examples
1*1^1+1 (2) and 1*1^1-1 (0) are not both prime. 1*2^1+1 (3) and 1*2^1-1 (1) are not both prime. 1*3^1+1 (4) and 1*3^1-1 (2) are not both prime. 1*4^1+1 (5) and 1*4^1-1 (3) are both prime. So, a(1) = 4.
Links
- Jon E. Schoenfield, Table of n, a(n) for n = 1..200 (first 77 terms from Michel Marcus)
Programs
-
Mathematica
zeroQ[n_] := Module[{f = FactorInteger[n]}, pow = GCD @@ f[[;; , 2]]; n > 4 && AnyTrue[Divisors[pow], # > 1 && Divisible[n, #] &]]; a[n_, kmax_] := Module[{k = 1}, If[zeroQ[n], 0, While[k <= kmax && ! And @@ PrimeQ[n*k^n + {-1, 1}], k++]; If[k < kmax, k, -1]]]; Table[a[n, 10^6], {n, 1, 25}] (* Amiram Eldar, Nov 18 2023, returns -1 if the search limit should exceed kmax *)
-
PARI
bot(n) = for(k=1, 10^5, if(ispseudoprime(n*k^n-1), if(ispseudoprime(n*k^n+1), return(k)))); n=1; while(n<100, print1(bot(n), ", "); n+=1)
-
PARI
a(n) = if ((n==16) || (n==27) || (n==36) || (n==64) /* || (n== ... */, return(0)); my(k=1); while (!(ispseudoprime(n*k^n-1) && ispseudoprime(n*k^n+1)), k++); k; \\ Michel Marcus, Nov 18 2023
Extensions
a(46) from Giovanni Resta, Mar 31 2014
Comments