cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A239735 Least number k such that n*k^n +/- 1 are twin primes, or a(n) = 0 if no such number exists.

Original entry on oeis.org

4, 3, 4, 1, 570, 1, 1464, 54, 60, 14025, 1932, 1, 7194, 15, 3612, 0, 4746, 1, 540, 150, 7060, 138, 80094, 6160, 33480, 93135, 0, 366618, 26058, 1, 90510, 16836, 9824, 418875, 57246, 0, 182394, 64077, 14178, 943410, 36078, 1, 314520, 15870, 194942, 15044700, 241944, 3871, 308730
Offset: 1

Views

Author

Derek Orr, Mar 30 2014

Keywords

Comments

a(n) = 1 iff n is in A014574.
If a(n) = 0, then n is in A097764.
If a(n) > 1 then A367566(n) divides a(n). - Jon E. Schoenfield, Nov 23 2023

Examples

			1*1^1+1 (2) and 1*1^1-1 (0) are not both prime. 1*2^1+1 (3) and 1*2^1-1 (1) are not both prime. 1*3^1+1 (4) and 1*3^1-1 (2) are not both prime. 1*4^1+1 (5) and 1*4^1-1 (3) are both prime. So, a(1) = 4.
		

Crossrefs

Programs

  • Mathematica
    zeroQ[n_] := Module[{f = FactorInteger[n]}, pow = GCD @@ f[[;; , 2]]; n > 4 && AnyTrue[Divisors[pow], # > 1 && Divisible[n, #] &]];
    a[n_, kmax_] := Module[{k = 1}, If[zeroQ[n], 0, While[k <= kmax && ! And @@ PrimeQ[n*k^n + {-1, 1}], k++]; If[k < kmax, k, -1]]]; Table[a[n, 10^6], {n, 1, 25}] (* Amiram Eldar, Nov 18 2023, returns -1 if the search limit should exceed kmax *)
  • PARI
    bot(n) = for(k=1, 10^5, if(ispseudoprime(n*k^n-1), if(ispseudoprime(n*k^n+1), return(k))));
    n=1; while(n<100, print1(bot(n), ", "); n+=1)
    
  • PARI
    a(n) = if ((n==16) || (n==27) || (n==36) || (n==64) /* || (n== ... */, return(0)); my(k=1); while (!(ispseudoprime(n*k^n-1) && ispseudoprime(n*k^n+1)), k++); k; \\ Michel Marcus, Nov 18 2023

Extensions

a(46) from Giovanni Resta, Mar 31 2014
Showing 1-1 of 1 results.