A239952 Number of partitions of n such that (number of distinct parts) >= least part.
0, 1, 1, 2, 3, 6, 8, 13, 18, 26, 36, 50, 68, 92, 123, 162, 214, 279, 360, 464, 595, 754, 959, 1206, 1513, 1893, 2358, 2918, 3615, 4451, 5462, 6691, 8174, 9940, 12081, 14631, 17675, 21314, 25637, 30763, 36861, 44059, 52555, 62600, 74417, 88287, 104600, 123716
Offset: 0
Examples
a(6) counts these 8 partitions: 51, 42, 411, 321, 3111, 2211, 21111, 111111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i, d) option remember; `if`(n=0, 1, `if`(i<=d+1, 0, add(b(n-i*j, i-1, d+`if`(j=0, 0, 1)), j=0..n/i))) end: a:= n-> combinat[numbpart](n) -b(n$2, 0): seq(a(n), n=0..60); # Alois P. Heinz, Apr 02 2014
-
Mathematica
z = 50; d[p_] := d[p] = Length[DeleteDuplicates[p]]; f[n_] := f[n] = IntegerPartitions[n]; Table[Count[f[n], p_ /; d[p] < Min[p]], {n, 0, z}] (*A239948*) Table[Count[f[n], p_ /; d[p] <= Min[p]], {n, 0, z}] (*A239949*) Table[Count[f[n], p_ /; d[p] == Min[p]], {n, 0, z}] (*A239950*) Table[Count[f[n], p_ /; d[p] > Min[p]], {n, 0, z}] (*A239951*) Table[Count[f[n], p_ /; d[p] >= Min[p]], {n, 0, z}] (*A239952*) b[n_, i_, d_] := b[n, i, d] = If[n==0, 1, If[i<=d+1, 0, Sum[b[n-i*j, i-1, d + If[j==0, 0, 1]], {j, 0, n/i}]]]; a[n_] := PartitionsP[n] - b[n, n, 0]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Nov 17 2015, after Alois P. Heinz *)