A239960 Number of partitions of n such that (number of distinct parts) = number of 1s.
1, 1, 0, 0, 1, 1, 2, 1, 4, 2, 6, 6, 8, 10, 16, 15, 22, 32, 31, 47, 54, 72, 81, 111, 123, 166, 189, 244, 274, 366, 411, 509, 614, 736, 872, 1056, 1256, 1479, 1785, 2099, 2479, 2942, 3498, 4028, 4870, 5600, 6655, 7712, 9127, 10512, 12431, 14327, 16776, 19401
Offset: 0
Examples
a(8) counts these 4 partitions : 611, 3311, 32111, 22211.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i=1, 0, add(b(n-1-i*j, i-1), j=1..(n-1)/i)))) end: a:= n-> `if`(n=0, 1, b(n-1$2)): seq(a(n), n=0..70); # Alois P. Heinz, Apr 03 2014
-
Mathematica
z = 54; d[p_] := d[p] = Length[DeleteDuplicates[p]]; Table[Count[IntegerPartitions[n], p_ /; d[p] == Count[p, 1]], {n, 0, z}] (* Second program: *) b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[i == 1, 0, Sum[b[n - 1 - i*j, i - 1], {j, 1, (n - 1)/i}]]]]; a[n_] := If[n == 0, 1, b[n - 1, n - 1]]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)