A239986 T(n,k)=Number of nXk 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.
1, 1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 13, 16, 7, 1, 6, 22, 56, 40, 10, 1, 7, 38, 171, 261, 84, 15, 1, 8, 65, 530, 1391, 935, 208, 24, 1, 9, 107, 1495, 7113, 9079, 4113, 474, 35, 1, 10, 169, 4059, 31226, 83658, 70107, 16724, 1047, 54, 1, 11, 257, 10121, 131242, 652346
Offset: 1
Examples
Some solutions for n=4 k=4 ..3..0..0..0....3..0..0..0....3..0..0..0....3..0..0..0....3..0..0..0 ..3..1..3..0....2..3..0..3....3..1..3..0....2..1..0..0....2..1..0..0 ..3..1..2..1....2..0..1..2....3..2..0..3....2..0..3..3....2..0..3..0 ..2..1..0..0....3..0..0..1....2..3..0..3....3..2..2..2....2..0..0..3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..128
Crossrefs
Column 1 is A159288
Formula
Empirical for column k:
k=1: a(n) = a(n-2) +2*a(n-3)
k=2: a(n) = 2*a(n-2) +10*a(n-3) -a(n-4) -5*a(n-5) -15*a(n-6) +a(n-7) +4*a(n-8) +2*a(n-9) +10*a(n-10) +5*a(n-11) -6*a(n-13)
Empirical for row n:
n=1: a(n) = 1
n=2: a(n) = n + 1
n=3: a(n) = (1/24)*n^4 - (1/4)*n^3 + (71/24)*n^2 - (43/4)*n + 23 for n>3
n=4: [polynomial of degree 10] for n>12
n=5: [polynomial of degree 24] for n>31
n=6: [polynomial of degree 55] for n>73
Comments