cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239986 T(n,k)=Number of nXk 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of the elements above it or one plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 13, 16, 7, 1, 6, 22, 56, 40, 10, 1, 7, 38, 171, 261, 84, 15, 1, 8, 65, 530, 1391, 935, 208, 24, 1, 9, 107, 1495, 7113, 9079, 4113, 474, 35, 1, 10, 169, 4059, 31226, 83658, 70107, 16724, 1047, 54, 1, 11, 257, 10121, 131242, 652346
Offset: 1

Views

Author

R. H. Hardin, Mar 30 2014

Keywords

Comments

Table starts
..1....1......1........1..........1............1............1............1
..2....3......4........5..........6............7............8............9
..3....6.....13.......22.........38...........65..........107..........169
..4...16.....56......171........530.........1495.........4059........10121
..7...40....261.....1391.......7113........31226.......131242.......514539
.10...84....935.....9079......83658.......652346......4803152.....33097266
.15..208...4113....70107....1174822.....16721012....226886115...2823199343
.24..474..16724...514297...15307425....381369904...9004871354.198719581101
.35.1047..63746..3533132..192702130...9009351655.404795616742
.54.2530.275188.27478686.2733573580.233083355837

Examples

			Some solutions for n=4 k=4
..3..0..0..0....3..0..0..0....3..0..0..0....3..0..0..0....3..0..0..0
..3..1..3..0....2..3..0..3....3..1..3..0....2..1..0..0....2..1..0..0
..3..1..2..1....2..0..1..2....3..2..0..3....2..0..3..3....2..0..3..0
..2..1..0..0....3..0..0..1....2..3..0..3....3..2..2..2....2..0..0..3
		

Crossrefs

Column 1 is A159288

Formula

Empirical for column k:
k=1: a(n) = a(n-2) +2*a(n-3)
k=2: a(n) = 2*a(n-2) +10*a(n-3) -a(n-4) -5*a(n-5) -15*a(n-6) +a(n-7) +4*a(n-8) +2*a(n-9) +10*a(n-10) +5*a(n-11) -6*a(n-13)
Empirical for row n:
n=1: a(n) = 1
n=2: a(n) = n + 1
n=3: a(n) = (1/24)*n^4 - (1/4)*n^3 + (71/24)*n^2 - (43/4)*n + 23 for n>3
n=4: [polynomial of degree 10] for n>12
n=5: [polynomial of degree 24] for n>31
n=6: [polynomial of degree 55] for n>73