A240007 Smallest k such that the number of groups of order k is equal to prime(n), or 0 if no such k exists.
4, 75, 8, 375, 140, 56, 675, 1029, 294, 1380, 0, 180, 420, 112, 120, 656, 6875, 312, 243, 3660, 0, 3612, 0, 4140, 6498, 0, 0, 0, 0, 810, 0, 1260, 792, 0, 0, 0, 0, 0, 1936, 0, 1456, 1320, 0, 0, 144, 1000, 1368, 0, 1404, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
Examples
a(6)= 56 because prime(6) = 13 => there exists 13 groups of order 56.
Links
- John H. Conway, Heiko Dietrich and E. A. O'Brien, Counting groups: gnus, moas and other exotica, The Mathematical Intelligencer, Spring 2008, Volume 30, Issue 2, pp 6-15, doi:10.1007/BF02985731.
Programs
-
Mathematica
lst={};Do[k=1;While[!FiniteGroupCount[k]==Prime[n],k++];If[k==2048,AppendTo[lst,0],AppendTo[lst,k]],{n,1,70}];lst
Extensions
Values for 59, 71, 79, 89, and 97 filled in from Conway link by Eric M. Schmidt, Sep 14 2014
Comments