cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240009 Number T(n,k) of partitions of n, where k is the difference between the number of odd parts and the number of even parts; triangle T(n,k), n>=0, -floor(n/2)+(n mod 2)<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 2, 1, 1, 0, 1, 1, 2, 3, 2, 2, 2, 1, 1, 0, 1, 1, 1, 2, 2, 2, 4, 3, 2, 2, 1, 1, 0, 1, 1, 2, 4, 5, 3, 4, 4, 2, 2, 1, 1, 0, 1, 1, 1, 2, 3, 3, 5, 7, 5, 4, 4, 2, 2, 1, 1, 0, 1, 1, 2, 4, 7, 7, 6, 8, 6, 4, 4, 2, 2, 1, 1, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Mar 30 2014

Keywords

Comments

T(n,k) = T(n+k,-k).
Sum_{k=-floor(n/2)+(n mod 2)..-1} T(n,k) = A108949(n).
Sum_{k=-floor(n/2)+(n mod 2)..0} T(n,k) = A171966(n).
Sum_{k=1..n} T(n,k) = A108950(n).
Sum_{k=0..n} T(n,k) = A130780(n).
Sum_{k=-1..1} T(n,k) = A239835(n).
Sum_{k<>0} T(n,k) = A171967(n).
T(n,-1) + T(n,1) = A239833(n).
Sum_{k=-floor(n/2)+(n mod 2)..n} k * T(n,k) = A209423(n).
Sum_{k=-floor(n/2)+(n mod 2)..n} (-1)^k*T(n,k) = A081362(n) = (-1)^n*A000700(n).

Examples

			T(5,-1) = 1: [2,2,1].
T(5,0) = 2: [4,1], [3,2].
T(5,1) = 1: [5].
T(5,2) = 1: [2,1,1,1].
T(5,3) = 1: [3,1,1].
T(5,5) = 1: [1,1,1,1,1].
Triangle T(n,k) begins:
: n\k : -5 -4 -3 -2 -1  0  1  2  3  4  5  6  7  8  9 10 ...
+-----+----------------------------------------------------
:  0  :                 1;
:  1  :                    1;
:  2  :              1, 0, 0, 1;
:  3  :                 1, 1, 0, 1;
:  4  :           1, 1, 0, 1, 1, 0, 1;
:  5  :              1, 2, 1, 1, 1, 0, 1;
:  6  :        1, 1, 1, 1, 2, 2, 1, 1, 0, 1;
:  7  :           1, 2, 3, 2, 2, 2, 1, 1, 0, 1;
:  8  :     1, 1, 2, 2, 2, 4, 3, 2, 2, 1, 1, 0, 1;
:  9  :        1, 2, 4, 5, 3, 4, 4, 2, 2, 1, 1, 0, 1;
: 10  :  1, 1, 2, 3, 3, 5, 7, 5, 4, 4, 2, 2, 1, 1, 0, 1;
		

Crossrefs

Row sums give A000041.
T(2n,n) gives A002865.
T(4n,2n) gives A182746.
T(4n+2,2n+1) gives A182747.
Row lengths give A016777(floor(n/2)).
Cf. A240021 (the same for partitions into distinct parts), A242618 (the same for parts counted without multiplicity).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          expand(b(n, i-1)+`if`(i>n, 0, b(n-i, i)*x^(2*irem(i, 2)-1)))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=ldegree(p)..degree(p)))(b(n$2)):
    seq(T(n), n=0..14);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]*x^(2*Mod[i, 2]-1)]]]; T[n_] := (degree = Exponent[b[n, n], x]; ldegree = -Exponent[b[n, n] /. x -> 1/x, x]; Table[Coefficient[b[n, n], x, i], {i, ldegree, degree}]); Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jan 06 2015, translated from Maple *)
  • PARI
    N=20; q='q+O('q^N);
    e(n) = if(n%2!=0, u, 1/u);
    gf = 1 / prod(n=1,N, 1 - e(n)*q^n );
    V = Vec( gf );
    { for (j=1, #V,  \\ print triangle, including leading zeros
        for (i=0, N-j, print1("   "));  \\ padding
        for (i=-j+1, j-1, print1(polcoeff(V[j], i, u),", "));
        print();
    ); }
    /* Joerg Arndt, Mar 31 2014 */

Formula

G.f.: 1 / prod(n>=1, 1 - e(n)*q^n ) = 1 + sum(n>=1, e(n)*q^n / prod(k=1..n, 1-e(k)*q^k) ) where e(n) = u if n odd, otherwise 1/u; see Pari program. [Joerg Arndt, Mar 31 2014]