A240021 Number T(n,k) of partitions of n into distinct parts, where k is the difference between the number of odd parts and the number of even parts; triangle T(n,k), n>=0, read by rows.
1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 1, 1, 1, 0, 1, 1, 1, 3, 1, 1, 1, 0, 2, 2, 2, 4, 1, 0, 1, 2, 1, 1, 4, 2, 4, 5, 1, 1, 1, 1, 2, 1, 2, 6, 3, 1, 6, 6, 1, 2, 2, 1, 3, 1, 5, 9, 3, 2, 9, 7, 2, 4, 3, 2, 3, 2, 8, 12, 4, 0, 1, 4, 12, 8, 3, 7, 4, 3, 4, 3, 14, 16, 4, 1, 1, 7, 16, 9, 6, 11, 5, 1, 4, 4, 6, 20, 20, 5, 2, 2
Offset: 0
Examples
T(12,-3) = 1: [6,4,2]. T(12,-2) = 2: [10,2], [8,4]. T(12,-1) = 1: [12]. T(12,0) = 2: [6,3,2,1], [5,4,2,1]. T(12,1) = 6: [9,2,1], [8,3,1], [7,4,1], [7,3,2], [6,5,1], [5,4,3]. T(12,2) = 3: [11,1], [9,3], [7,5]. T(13,-1) = 6: [10,2,1], [8,4,1], [8,3,2], [7,4,2], [6,5,2], [6,4,3]. T(14,-2) = 3: [12,2], [10,4], [8,6]. Triangle T(n,k) begins: : n\k : -3 -2 -1 0 1 2 3 ... +-----+-------------------------- : 0 : 1 : 1 : 1 : 2 : 1 : 3 : 1, 1 : 4 : 1, 0, 0, 1 : 5 : 2, 1 : 6 : 1, 1, 0, 1, 1 : 7 : 1, 3, 1 : 8 : 1, 1, 0, 2, 2 : 9 : 2, 4, 1, 0, 1 : 10 : 2, 1, 1, 4, 2 : 11 : 4, 5, 1, 1, 1 : 12 : 1, 2, 1, 2, 6, 3 : 13 : 1, 6, 6, 1, 2, 2 : 14 : 1, 3, 1, 5, 9, 3
Links
- Alois P. Heinz, Rows n = 0..500, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, 1, expand(b(n, i-1)+`if`(i>n, 0, b(n-i, i-1)*x^(2*irem(i, 2)-1))))) end: T:= n-> (p-> seq(coeff(p, x, i), i=ldegree(p)..degree(p)))(b(n$2)): seq(T(n), n=0..20);
-
Mathematica
b[n_, i_] := b[n, i] = If[n>i*(i+1)/2, 0, If[n == 0, 1, Expand[b[n, i-1] + If[i>n, 0, b[n-i, i-1]*x^(2*Mod[i, 2]-1)]]]]; T[n_] := Function[{p}, Table[ Coefficient[p, x, i], {i, Exponent[p, x, Min], Exponent[p, x]}]][b[n, n]]; Table[ T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Feb 11 2015, after Alois P. Heinz *)
-
PARI
N=20; q='q+O('q^N); e(n) = if(n%2!=0, u, 1/u); gf = prod(n=1,N, 1 + e(n)*q^n ); V = Vec( gf ); { for (j=1, #V, \\ print triangle, including leading zeros for (i=0, N-j, print1(" ")); \\ padding for (i=-j+1, j-1, print1(polcoeff(V[j], i, u),", ")); print(); ); } /* Joerg Arndt, Apr 01 2014 */
Formula
G.f.: prod(n>=1, 1 + e(n)*q^n ) = 1 + sum(n>=1, e(n)*q^n * prod(k=1..n-1, 1+e(k)*q^k) ) where e(n) = u if n odd, otherwise 1/u; see Pari program. [Joerg Arndt, Apr 01 2014]
Comments