cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240021 Number T(n,k) of partitions of n into distinct parts, where k is the difference between the number of odd parts and the number of even parts; triangle T(n,k), n>=0, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 1, 1, 1, 0, 1, 1, 1, 3, 1, 1, 1, 0, 2, 2, 2, 4, 1, 0, 1, 2, 1, 1, 4, 2, 4, 5, 1, 1, 1, 1, 2, 1, 2, 6, 3, 1, 6, 6, 1, 2, 2, 1, 3, 1, 5, 9, 3, 2, 9, 7, 2, 4, 3, 2, 3, 2, 8, 12, 4, 0, 1, 4, 12, 8, 3, 7, 4, 3, 4, 3, 14, 16, 4, 1, 1, 7, 16, 9, 6, 11, 5, 1, 4, 4, 6, 20, 20, 5, 2, 2
Offset: 0

Views

Author

Alois P. Heinz, Mar 31 2014

Keywords

Comments

T(n,k) is defined for all n >= 0, k in A001057. Row n contains all terms from the leftmost to the rightmost nonzero term. All other terms (not in the triangle) are equal to 0. First nonzero term of column k>=0 is at n = k^2, first nonzero term of column k<=0 is at n = k*(k+1).
T(n,k) = T(n+k,-k).
T(2n*(2n+1),2n) = A000041(n).
T(4n^2+14n+11,2n+2) = A000070(n).
T(n^2,n) = 1.
T(n^2,n-1) = 0.
T(n^2,n-2) = A209815(n+1).
T(n^2+1,n-1) = A000065(n).
T(n,0) = A239241(n).
Sum_{k<=-1} T(n,k) = A239239(n).
Sum_{k<=0} T(n,k) = A239240(n).
Sum_{k>=1} T(n,k) = A239242(n).
Sum_{k>=0} T(n,k) = A239243(n).
Sum_{k=-1..1} T(n,k) = A239881(n).
T(n,-1) + T(n,1) = A239880(n).
Sum_{k=-n..n} T(n,k) = A000009 (row sums).

Examples

			T(12,-3) = 1: [6,4,2].
T(12,-2) = 2: [10,2], [8,4].
T(12,-1) = 1: [12].
T(12,0) = 2: [6,3,2,1], [5,4,2,1].
T(12,1) = 6: [9,2,1], [8,3,1], [7,4,1], [7,3,2], [6,5,1], [5,4,3].
T(12,2) = 3: [11,1], [9,3], [7,5].
T(13,-1) = 6: [10,2,1], [8,4,1], [8,3,2], [7,4,2], [6,5,2], [6,4,3].
T(14,-2) = 3: [12,2], [10,4], [8,6].
Triangle T(n,k) begins:
: n\k : -3 -2 -1  0  1  2  3  ...
+-----+--------------------------
:  0  :           1
:  1  :              1
:  2  :        1
:  3  :           1, 1
:  4  :        1, 0, 0, 1
:  5  :           2, 1
:  6  :     1, 1, 0, 1, 1
:  7  :        1, 3, 1
:  8  :     1, 1, 0, 2, 2
:  9  :        2, 4, 1, 0, 1
: 10  :     2, 1, 1, 4, 2
: 11  :        4, 5, 1, 1, 1
: 12  :  1, 2, 1, 2, 6, 3
: 13  :     1, 6, 6, 1, 2, 2
: 14  :  1, 3, 1, 5, 9, 3
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, 1,
          expand(b(n, i-1)+`if`(i>n, 0, b(n-i, i-1)*x^(2*irem(i, 2)-1)))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=ldegree(p)..degree(p)))(b(n$2)):
    seq(T(n), n=0..20);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n>i*(i+1)/2, 0, If[n == 0, 1, Expand[b[n, i-1] + If[i>n, 0, b[n-i, i-1]*x^(2*Mod[i, 2]-1)]]]]; T[n_] := Function[{p}, Table[ Coefficient[p, x, i], {i, Exponent[p, x, Min], Exponent[p, x]}]][b[n, n]]; Table[ T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Feb 11 2015, after Alois P. Heinz *)
  • PARI
    N=20; q='q+O('q^N);
    e(n) = if(n%2!=0, u, 1/u);
    gf = prod(n=1,N, 1 + e(n)*q^n );
    V = Vec( gf );
    { for (j=1, #V,  \\ print triangle, including leading zeros
        for (i=0, N-j, print1("   "));  \\ padding
        for (i=-j+1, j-1, print1(polcoeff(V[j], i, u),", "));
        print();
    ); }
    /* Joerg Arndt, Apr 01 2014 */

Formula

G.f.: prod(n>=1, 1 + e(n)*q^n ) = 1 + sum(n>=1, e(n)*q^n * prod(k=1..n-1, 1+e(k)*q^k) ) where e(n) = u if n odd, otherwise 1/u; see Pari program. [Joerg Arndt, Apr 01 2014]