A240052 2nd arithmetic derivative of products of 2 successive prime numbers (A006094).
1, 12, 16, 21, 44, 31, 60, 41, 56, 92, 72, 71, 124, 123, 140, 240, 244, 448, 121, 384, 236, 297, 176, 161, 249, 284, 247, 540, 191, 608, 221, 272, 380, 912, 520, 380, 1024, 371, 428, 912, 852, 508, 1472, 433, 696, 297, 293, 705, 860, 493, 716, 1456, 668, 512, 924, 636, 1188, 552, 669, 764, 2112, 1340, 521, 1504, 951, 1836, 672, 1176, 1300, 1107, 1076, 737, 908, 1520, 641, 776, 661, 821, 1647, 1416, 1828
Offset: 1
Keywords
Examples
(2*3)’ = 1*3+2*1 = 5; (5)’ = 1; (2^2)’ = 2*2^1 = 2*2 = 4.
Links
- Freimut Marschner, Table of n, a(n) for n = 1..429
- Wikipedia, Arithmetic derivative
- Wikipedia, p-derivation
Programs
-
Haskell
a240052 = a068346 . a006094 -- Reinhard Zumkeller, Apr 15 2014
-
Maple
with(numtheory); P:=proc(q) local a,b,c,p,n; for n from 1 to q do a:=ithprime(n)*ithprime(n+1); b:=a*add(op(2,p)/op(1,p),p=ifactors(a)[2]); c:=b*add(op(2,p)/op(1,p),p=ifactors(b)[2]); print(c); od; end: P(10^3); # Paolo P. Lava, Apr 01 2014
Comments