A240057 Number of partitions of n such that (greatest part) is not = (multiplicity of greatest part).
0, 2, 3, 4, 6, 10, 14, 21, 28, 40, 53, 74, 97, 131, 171, 225, 290, 377, 480, 616, 779, 987, 1238, 1556, 1935, 2411, 2981, 3685, 4527, 5562, 6793, 8295, 10081, 12241, 14805, 17890, 21538, 25906, 31062, 37201, 44429, 53004, 63070, 74964, 88898, 105297
Offset: 1
Examples
a(9) = 28 counts all the 30 partitions of 9 except 333 and 2211111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n<0, 0, `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))) end: a:= n->combinat[numbpart](n)-add(b(n-j^2, j-1), j=0..isqrt(n)): seq(a(n), n=1..50); # Alois P. Heinz, Apr 03 2014
-
Mathematica
z = 60; f[n_] := f[n] = IntegerPartitions[n]; t1 = Table[Count[f[n], p_ /; Max[p] < Count[p, Max[p]]], {n, 0, z}] (* A003106 *) t2 = Table[Count[f[n], p_ /; Max[p] <= Count[p, Max[p]]], {n, 0, z}] (* A003114 *) t3 = Table[Count[f[n], p_ /; Max[p] == Count[p, Max[p]]], {n, 0, z}] (* A006141 *) tt = Table[Count[f[n], p_ /; Max[p] != Count[p, Max[p]]], {n, 0, z}] (* A240057 *) t4 = Table[Count[f[n], p_ /; Max[p] > Count[p, Max[p]]], {n, 0, z}] (* A039899 *) t5 = Table[Count[f[n], p_ /; Max[p] >= Count[p, Max[p]]], {n, 0, z}] (* A039900 *) (* second program: *) b[n_, i_] := b[n, i] = If[n < 0, 0, If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[i > n, 0, b[n - i, i]]]]]; a[n_] := PartitionsP[n] - Sum[b[n - j^2, j - 1], {j, 0, Sqrt[n]}]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Aug 30 2016, after Alois P. Heinz *)
Comments