A240089 Number of partitions of n having integer root mean square.
1, 2, 2, 3, 2, 4, 3, 6, 3, 6, 2, 9, 4, 9, 6, 17, 5, 20, 9, 19, 13, 31, 14, 47, 19, 68, 24, 90, 35, 108, 52, 159, 68, 217, 79, 308, 120, 389, 162, 529, 214, 717, 282, 979, 377, 1316, 487, 1703, 672, 2257, 904, 3031, 1169, 3919, 1517, 5153, 1970, 6769, 2544
Offset: 1
Examples
a(10) counts these 6 partitions: [10], [5,5], [5,3,1,1], [4,2,1,1,1,1], [2,2,2,2,2], [1,1,1,1,1,1,1,1,1,1]; e.g., [5,3,1,1] has root mean square sqrt((25 + 9 + 1 + 1)/4) = 3.
Crossrefs
Cf. A240090.
Programs
-
Mathematica
z = 15; ColumnForm[t = Map[Select[IntegerPartitions[#], IntegerQ[RootMeanSquare[#]] &] &, Range[z]]] (* shows the partitions *) t1 = Map[Length, t] (* A240089 *) ColumnForm[u = Map[Select[IntegerPartitions[#],IntegerQ[ContraharmonicMean[#]] &] &, Range[z]]] (* shows the partitions *) t2 = Map[Length, u] (* A240090 *)
Comments