cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A339454 Number of subsets of {1..n} whose root mean square is an integer.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 10, 15, 20, 29, 52, 87, 166, 311, 538, 943, 1682, 2915, 5054, 8905, 15904, 28533, 51826, 95191, 175402, 325777, 607542, 1134191, 2128922, 3986433, 7485522, 14065135, 26446388, 49796025, 93920770, 177470237, 335780796, 636883269, 1209603646
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 05 2020

Keywords

Examples

			a(9) = 15 subsets: {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {1, 7}, {1, 5, 7}, {1, 3, 5, 8, 9}, {3, 4, 5, 7, 9}, {1, 3, 5, 6, 8, 9} and {3, 4, 5, 6, 7, 9}.
		

Crossrefs

Programs

  • Python
    from functools import lru_cache
    from sympy.ntheory.primetest import is_square
    def cond(sos, c): return c > 0 and sos%c == 0 and is_square(sos//c)
    @lru_cache(maxsize=None)
    def b(n, sos, c):
        if n == 0: return int(cond(sos, c))
        return b(n-1, sos, c) + b(n-1, sos+n*n, c+1)
    a = lambda n: b(n, 0, 0)
    print([a(n) for n in range(1, 41)]) # Michael S. Branicky, Oct 06 2022

Formula

a(n) = A357415(n) + A357416(n). - Max Alekseyev, Mar 25 2025

Extensions

a(23)-a(40) from Alois P. Heinz, Dec 05 2020

A240090 Number of partitions of n that have integer contraharmonic mean.

Original entry on oeis.org

1, 2, 2, 3, 2, 6, 3, 7, 5, 8, 5, 17, 8, 21, 14, 31, 18, 49, 28, 56, 42, 90, 52, 146, 77, 189, 118, 257, 158, 370, 219, 530, 313, 724, 412, 999, 578, 1372, 809, 1837, 1094, 2515, 1472, 3387, 1948, 4584, 2656, 6145, 3527, 8114, 4665, 10784, 6225, 14196, 8150
Offset: 1

Views

Author

Keywords

Comments

The contraharmonic mean of a set {x(1),..,x(k)} is defined as (x(1)^2 + ... + x(k)^2)/(x(1) + ... + x(k)); if the set is a partition of n, this mean is (x(1)^2 + ... + x(k)^2)/n, which is the square of the root mean square of the partition, discussed at A240090.

Examples

			a(10) counts these 8 partitions: [10], [6,1,1,1,1], [5,5], [5,1,1,1,1,1], [4,3,2,1], [3,2,2,1,1,1], [2,2,2,2,2], [1,1,1,1,1,1,1,1,1,1]; e.g., [4,3,2,1] has contraharmonic mean (16 + 9 + 4 + 1)/10 = 3.
		

Crossrefs

Cf. A240089.

Programs

  • Mathematica
    z = 15; ColumnForm[t = Map[Select[IntegerPartitions[#],      IntegerQ[RootMeanSquare[#]] &] &, Range[z]]] (* shows the partitions *)
    t1 = Map[Length, t]  (* A240089 *)
    ColumnForm[u = Map[Select[IntegerPartitions[#], IntegerQ[ContraharmonicMean[#]] &] &, Range[z]]] (* shows the partitions *)
    t2 = Map[Length, u]  (* A240090 *)
Showing 1-2 of 2 results.