cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A240100 Numbers with primitive root -17.

Original entry on oeis.org

2, 4, 5, 10, 19, 25, 37, 38, 41, 43, 47, 50, 59, 61, 67, 74, 82, 83, 86, 94, 97, 103, 113, 118, 122, 125, 127, 134, 151, 166, 173, 179, 191, 193, 194, 197, 206, 226, 233, 239, 250, 251, 254, 263, 269, 271, 277, 302, 313, 317, 331, 346, 358, 359, 361, 382
Offset: 1

Views

Author

Vincenzo Librandi, Apr 01 2014

Keywords

Crossrefs

Cf. numbers with positive primitive root r: A167791 (r=2), A167792 (r=3), A167793 (r=5), A167794 (r=6), A167795 (r=7), A167796 (r=8), A167797 (r=10), A240028 (r=11), A240030 (r=12), A240032 (r=13), A240094 (r=14), A240096 (r=15), A240101 (r=17).
Cf. numbers with negative primitive root r: A167798 (r=-2), A167799 (r=-3), A167800 (r=-4), A167801 (r=-5), A167802 (r=-6), A167803 (r=-7), A167804 (r=-8), A167805 (r=-9), A167806 (r=-10), A240029 (r=-11), A240031 (r=-12), A240093 (r=-13), A240095 (r=-14), A240097 (r=-15).

Programs

  • Mathematica
    pr = -17; Select[Range[2, 400], MultiplicativeOrder[pr, #] == EulerPhi[#] &]

A240102 Numbers with primitive root -18.

Original entry on oeis.org

5, 7, 23, 29, 31, 37, 47, 53, 61, 71, 101, 103, 109, 127, 149, 151, 157, 167, 173, 181, 191, 197, 223, 239, 263, 269, 271, 277, 293, 317, 349, 359, 367, 383, 389, 397, 421, 461, 479, 503, 509, 529, 541, 557, 607, 613, 647, 653, 661, 677, 701, 719, 733
Offset: 1

Views

Author

Vincenzo Librandi, Apr 01 2014

Keywords

Crossrefs

Cf. numbers with positive primitive root r: A167791 (r=2), A167792 (r=3), A167793 (r=5), A167794 (r=6), A167795 (r=7), A167796 (r=8), A167797 (r=10), A240028 (r=11), A240030 (r=12), A240032 (r=13), A240094 (r=14), A240096 (r=15), A240101 (r=17), A240103 (r=18).
Cf. numbers with negative primitive root r: A167798 (r=-2), A167799 (r=-3), A167800 (r=-4), A167801 (r=-5), A167802 (r=-6), A167803 (r=-7), A167804 (r=-8), A167805 (r=-9), A167806 (r=-10), A240029 (r=-11), A240031 (r=-12), A240093 (r=-13), A240095 (r=-14), A240097 (r=-15), A240100 (r=-17).

Programs

  • Mathematica
    pr = -18; Select[Range[2, 800], MultiplicativeOrder[pr, #] == EulerPhi[#] &]
  • PARI
    is(n)=if(gcd(n,6)>1, return(0)); my(p=eulerphi(n)); znorder(Mod(-18,n),p)==p \\ Charles R Greathouse IV, Nov 26 2014

A240103 Numbers with primitive root 18.

Original entry on oeis.org

5, 11, 29, 37, 43, 53, 59, 61, 67, 83, 101, 107, 109, 121, 139, 149, 157, 163, 173, 179, 181, 197, 227, 251, 269, 277, 283, 293, 317, 347, 349, 379, 389, 397, 419, 421, 461, 467, 491, 509, 523, 541, 547, 557, 563, 571, 587, 613, 619, 653, 659, 661, 677
Offset: 1

Views

Author

Vincenzo Librandi, Apr 01 2014

Keywords

Crossrefs

Cf. numbers with positive primitive root r: A167791 (r=2), A167792 (r=3), A167793 (r=5), A167794 (r=6), A167795 (r=7), A167796 (r=8), A167797 (r=10), A240028 (r=11), A240030 (r=12), A240032 (r=13), A240094 (r=14), A240096 (r=15), A240101 (r=17).
Cf. numbers with negative primitive root r: A167798 (r=-2), A167799 (r=-3), A167800 (r=-4), A167801 (r=-5), A167802 (r=-6), A167803 (r=-7), A167804 (r=-8), A167805 (r=-9), A167806 (r=-10), A240029 (r=-11), A240031 (r=-12), A240093 (r=-13), A240095 (r=-14), A240097 (r=-15), A240100 (r=-17), A240102 (r=-18).

Programs

  • Mathematica
    pr = 18; Select[Range[2, 800], MultiplicativeOrder[pr, #] == EulerPhi[#] &]
  • PARI
    is(n)=if(gcd(n, 6)>1, return(0)); my(p=eulerphi(n)); znorder(Mod(18, n), p)==p \\ Charles R Greathouse IV, Nov 26 2014

A240104 Numbers with primitive root -19.

Original entry on oeis.org

2, 3, 6, 13, 26, 29, 31, 37, 41, 53, 58, 59, 62, 67, 71, 74, 79, 82, 89, 103, 106, 107, 113, 118, 134, 142, 158, 167, 173, 178, 179, 193, 206, 214, 223, 226, 227, 257, 269, 281, 293, 317, 331, 334, 337, 346, 358, 379, 383, 386, 401, 431, 433, 439, 446, 449
Offset: 1

Views

Author

Vincenzo Librandi, Apr 01 2014

Keywords

Crossrefs

Cf. numbers with positive primitive root r: A167791 (r=2), A167792 (r=3), A167793 (r=5), A167794 (r=6), A167795 (r=7), A167796 (r=8), A167797 (r=10), A240028 (r=11), A240030 (r=12), A240032 (r=13), A240094 (r=14), A240096 (r=15), A240101 (r=17), A240103 (r=18), A240106 (r=19).
Cf. numbers with negative primitive root r: A167798 (r=-2), A167799 (r=-3), A167800 (r=-4), A167801 (r=-5), A167802 (r=-6), A167803 (r=-7), A167804 (r=-8), A167805 (r=-9), A167806 (r=-10), A240029 (r=-11), A240031 (r=-12), A240093 (r=-13), A240095 (r=-14), A240097 (r=-15), A240100 (r=-17), A240102 (r=-18).

Programs

  • Mathematica
    pr = -19; Select[Range[2, 500], MultiplicativeOrder[pr, #] == EulerPhi[#] &]
Showing 1-4 of 4 results.