A240103 Numbers with primitive root 18.
5, 11, 29, 37, 43, 53, 59, 61, 67, 83, 101, 107, 109, 121, 139, 149, 157, 163, 173, 179, 181, 197, 227, 251, 269, 277, 283, 293, 317, 347, 349, 379, 389, 397, 419, 421, 461, 467, 491, 509, 523, 541, 547, 557, 563, 571, 587, 613, 619, 653, 659, 661, 677
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. numbers with positive primitive root r: A167791 (r=2), A167792 (r=3), A167793 (r=5), A167794 (r=6), A167795 (r=7), A167796 (r=8), A167797 (r=10), A240028 (r=11), A240030 (r=12), A240032 (r=13), A240094 (r=14), A240096 (r=15), A240101 (r=17).
Cf. numbers with negative primitive root r: A167798 (r=-2), A167799 (r=-3), A167800 (r=-4), A167801 (r=-5), A167802 (r=-6), A167803 (r=-7), A167804 (r=-8), A167805 (r=-9), A167806 (r=-10), A240029 (r=-11), A240031 (r=-12), A240093 (r=-13), A240095 (r=-14), A240097 (r=-15), A240100 (r=-17), A240102 (r=-18).
Programs
-
Mathematica
pr = 18; Select[Range[2, 800], MultiplicativeOrder[pr, #] == EulerPhi[#] &]
-
PARI
is(n)=if(gcd(n, 6)>1, return(0)); my(p=eulerphi(n)); znorder(Mod(18, n), p)==p \\ Charles R Greathouse IV, Nov 26 2014