cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240130 Least prime of the form prime(n)^2 + k^2, or 0 if none.

Original entry on oeis.org

5, 13, 29, 53, 137, 173, 293, 397, 593, 857, 977, 1373, 1697, 1913, 2213, 2909, 3517, 3821, 4493, 5077, 5333, 6257, 7213, 7937, 9413, 10301, 10613, 11549, 11897, 13093, 16193, 17417, 18773, 19421, 22397, 22817, 24749, 26573, 27893, 30029
Offset: 1

Views

Author

Jonathan Sondow, Apr 07 2014

Keywords

Comments

The positive terms form a subsequence of A185086 = Fouvry-Iwaniec primes = primes of the form prime^2 + integer^2.
The values of k are A240131.
Is a(n) < a(n+1) for all n? (I have checked it for n <= 10^6.) Note that A240131 is far from being monotone.

Examples

			Prime(2) = 3 and 3^2 + 1^2 = 10 is not prime but 3^2 + 2^2 = 13 is prime, so a(2) = 13.
		

Crossrefs

Programs

  • Maple
    g:= proc(p) local k; for k from 2 by 2 do if isprime(p^2 + k^2) then return p^2+k^2 fi od end proc:
    g(2):= 5:
    seq(g(ithprime(i)),i=1..1000); # Robert Israel, Nov 04 2015
  • Mathematica
    Table[First[Select[Prime[n]^2 + Range[20]^2, PrimeQ]], {n, 40}]
  • PARI
    a(n) = {p = prime(n); k = 1 - p%2; inc = 2; while (!isprime(q=p^2+k^2), k += inc); q;} \\ Michel Marcus, Nov 04 2015

Formula

a(n) == 1 (mod 4) if a(n) > 0.
a(n) > 0 if Bunyakovsky's conjecture is true.
a(n) <> a(m) if n <> m and a(n) > 0, by uniqueness in Fermat's 4n+1 Theorem.
a(n) = prime(n)^2 + A240131(n)^2 if a(n) > 0.