A240131 Least k such that prime(n)^2 + k^2 is prime, or 0 if none.
1, 2, 2, 2, 4, 2, 2, 6, 8, 4, 4, 2, 4, 8, 2, 10, 6, 10, 2, 6, 2, 4, 18, 4, 2, 10, 2, 10, 4, 18, 8, 16, 2, 10, 14, 4, 10, 2, 2, 10, 4, 6, 4, 2, 8, 16, 4, 18, 8, 4, 2, 10, 16, 14, 18, 8, 10, 6, 2, 4, 8, 2, 2, 4, 2, 2, 6, 20, 2, 14, 8, 10, 8, 2, 6, 12, 4, 18, 4, 6, 14, 4, 6, 12, 4, 28, 10, 12, 6, 2, 12, 14, 2, 6, 4, 2, 14, 14, 10, 6
Offset: 1
Keywords
Examples
Prime(3) = 5 and 5^2 + 1^2 = 26 is not prime but 5^2 + 2^2 = 29 is prime, so a(3) = 2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A240130.
Programs
-
Maple
f:= proc(p) local k; for k from 2 by 2 do if isprime(p^2 + k^2) then return k fi eod nd proc: f(2):= 1: map(f, select(isprime, [2,seq(2*i+1,i=1..10000)])); # Robert Israel, Nov 04 2015
-
Mathematica
f[n_] := Block[{k = If[n == 1, 1, 2], p = Prime@ n}, While[ !PrimeQ[k^2 + p^2], k += 2]; k]; Array[f, 100] (* Robert G. Wilson v, Nov 03 2015 *) lk[n_]:=Module[{k=2,n2=n^2},While[!PrimeQ[n2+k^2],k+=2];k]; Join[{1}, Table[ lk[x],{x,Prime[Range[2,100]]}]] (* Harvey P. Dale, Mar 22 2019 *)
-
PARI
vector(100, n, p = prime(n); k = 1 - p%2; inc = 2; while (!isprime(q=p^2+k^2), k += inc); k; ) \\ Altug Alkan, Nov 04 2015
Formula
a(n)^2 = A240130(n) - prime(n)^2 if a(n) > 0.
Comments