A240133 Least number k such that n!/k + 1 and n!/k - 1 are twin primes.
1, 2, 2, 3, 12, 12, 48, 8, 5, 54, 44, 6, 24, 39, 6, 81, 20, 30, 19, 25, 380, 28, 264, 50, 52, 250, 35, 385, 20, 77, 182, 405, 77, 605, 143, 720, 144, 722, 96, 713, 46, 403, 98, 4508, 90, 77, 560, 806, 64, 665, 2376, 1785, 893, 1235, 4278, 159, 66, 1326, 1806, 429, 475
Offset: 3
Keywords
Examples
6!/1-1 (719) and 6!/1+1 (721) are not both prime. 6!/2-1 (359) and 6!/2+1 (361) are not both prime. 6!/3-1 (239) and 6!/3+1 (241) are both prime. thus, a(6) = 3.
Links
- Giovanni Resta, Table of n, a(n) for n = 3..350
Programs
-
Mathematica
lnk[n_]:=Module[{nf=n!,k=1},While[!AllTrue[nf/k+{1,-1},PrimeQ],k++];k]; Array[lnk,70,3] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 18 2015 *)
-
PARI
f(n)=for(k=1,n!,if(floor(n!/k-1)==n!/k-1 && floor(n!/k+1)==n!/k+1,if(ispseudoprime(n!/k-1) && ispseudoprime(n!/k+1),return(k))))