A240139 Number of partitions of n into distinct parts, where the difference between the number of odd parts and the number of even parts is 3.
1, 0, 1, 0, 2, 0, 3, 0, 4, 1, 5, 2, 7, 4, 8, 7, 10, 12, 12, 18, 14, 27, 17, 38, 21, 53, 26, 71, 33, 94, 44, 121, 58, 155, 79, 194, 107, 241, 146, 296, 197, 361, 267, 436, 355, 525, 472, 628, 618, 750, 805, 894, 1035, 1064, 1324, 1267, 1673, 1511, 2103, 1804
Offset: 9
Keywords
Examples
a(20) = 2: [9,5,3,2,1], [7,5,4,3,1]. a(21) = 7: [17,3,1], [15,5,1], [13,7,1], [13,5,3], [11,9,1], [11,7,3], [9,7,5].
Links
- Alois P. Heinz, Table of n, a(n) for n = 9..1000
Crossrefs
Column k=3 of A240021.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2 or abs(t)>n, 0, `if`(n=0, 1, b(n, i-1, t)+ `if`(i>n, 0, b(n-i, i-1, t+(2*irem(i, 2)-1))))) end: a:= n-> b(n$2, -3): seq(a(n), n=9..80);
-
Mathematica
b[n_, i_, t_] := b[n, i, t] = If[n > i(i+1)/2 || Abs[t] > n, 0, If[n == 0, 1, b[n, i-1, t] + If[i>n, 0, b[n-i, i-1, t + 2 Mod[i, 2] - 1]]]]; a[n_] := b[n, n, -3]; a /@ Range[9, 80] (* Jean-François Alcover, Dec 10 2020, after Alois P. Heinz *)
Formula
a(n) = [x^n y^3] Product_{i>=1} 1+x^i*y^(2*(i mod 2)-1).
Comments