A240143 Number of partitions of n into distinct parts, where the difference between the number of odd parts and the number of even parts is 7.
1, 0, 1, 0, 2, 0, 3, 0, 5, 0, 7, 0, 11, 0, 15, 0, 21, 1, 28, 2, 38, 4, 49, 7, 65, 12, 82, 19, 105, 30, 131, 45, 164, 67, 201, 96, 248, 136, 301, 188, 366, 258, 441, 347, 531, 463, 635, 609, 761, 795, 907, 1025, 1082, 1313, 1289, 1665, 1537, 2099, 1831, 2624
Offset: 49
Keywords
Examples
a(59) = 7: [23,11,9,7,5,3,1], [21,13,9,7,5,3,1], [19,15,9,7,5,3,1], [19,13,11,7,5,3,1], [17,15,11,7,5,3,1], [17,13,11,9,5,3,1], [15,13,11,9,7,3,1]. a(70) = 4: [19,13,11,9,7,5,3,2,1], [17,15,11,9,7,5,3,2,1], [17,13,11,9,7,5,4,3,1], [15,13,11,9,7,6,5,3,1].
Links
- Alois P. Heinz, Table of n, a(n) for n = 49..1000
Crossrefs
Column k=7 of A240021.
Programs
-
Maple
b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2 or abs(t)>n, 0, `if`(n=0, 1, b(n, i-1, t)+ `if`(i>n, 0, b(n-i, i-1, t+(2*irem(i, 2)-1))))) end: a:= n-> b(n$2, -7): seq(a(n), n=49..120);
Formula
a(n) = [x^n y^7] Product_{i>=1} 1+x^i*y^(2*(i mod 2)-1).
Comments