A240174 a(n) is the right-truncatable prime of n digits appearing as the initial digits of the smallest number of the form exp(k) for some positive integer k.
2, 73, 373, 3733, 23333, 719333, 2339933, 23399339
Offset: 1
Examples
2 is the leading single digit of e itself and is by the convention of A024770 considered truncatable; the leading digits of e^2, without decimal, are the right-truncatable 73; and e^75 is then the first to produce a 3-digit right-truncatable prime, also producing the 4-digit one (a(3)=373 and a(4)=3733, with e^75 beginning with these digits).
Links
- Wikipedia, Truncatable prime
- Wikipedia, Mathematical coincidence
- James G. Merickel, curio on powers of e (1st appearing leading right-truncatables of each length concatenated)
- James G. Merickel, curio on powers of e (1st appearing leading right-truncatables of each length concatenated), message 25448 in primenumbers Yahoo group, Jan 7, 2014.
Crossrefs
Cf. A024770.
Programs
-
PARI
{ \\ R is the array of 8 by-length ordered lists of right-truncatable primes.\\ \\ a is the vector of list-sizes for R.\\ R=[[2,3,5,7],[23,29,31,37,53,59,71,73,79],[223,239,293,311,313,317,373,379,593,599,719,733,739,797],[2333,2339,2393,2399,2939,3119,3137,3733,3739,3793,3797,5939,7193,7331,7333,7393],[23333,23339,23399,23993,29399,31193,31379,37337,37339,37397,59393,59399,71933,73331,73939],[233993,239933,293999,373379,373393,593933,593993,719333,739393,739397,739399],[2339933,2399333,2939999,3733799,5939333,7393913,7393933],[23399339,29399999,37337999,59393339,73939133]]; a=[4,9,14,16,15,12,8,5];i=1;e=exp(1);e1=e/10;n=e; for(j=1,8, E=10^j;while(1, m=floor(n);for(k=1,a[j], if(m==R[j][k],print(m);n*=10;break(2))); if(n>E/e,n*=e1,n*=e);i++)) }
Comments