cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A240175 Number of partitions of n such that the least part is less than its multiplicity.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 6, 7, 12, 16, 24, 32, 47, 60, 84, 110, 148, 191, 254, 323, 423, 535, 687, 864, 1100, 1371, 1726, 2141, 2669, 3290, 4075, 4990, 6136, 7481, 9137, 11087, 13471, 16264, 19659, 23641, 28438, 34060, 40801, 48676, 58074, 69049, 82064, 97246
Offset: 0

Views

Author

Clark Kimberling, Apr 02 2014

Keywords

Examples

			a(8) counts these 12 partitions:  611, 5111, 4211, 41111, 3311, 32111, 311111, 2222, 22211, 221111, 2111111, 11111111.
		

Crossrefs

Programs

  • Mathematica
    z = 60; f[n_] := f[n] = IntegerPartitions[n];
    Table[Count[f[n], p_ /; Min[p] < Count[p, Min[p]]], {n, 0, z}](* A240175 *)
    Table[Count[f[n], p_ /; Min[p] <= Count[p, Min[p]]], {n, 0, z}](* A188216 *)
    Table[Count[f[n], p_ /; Min[p] == Count[p, Min[p]]], {n, 0, z}](* A096403 *)
    Table[Count[f[n], p_ /; Min[p] > Count[p, Min[p]]], {n, 0, z}] (* A240176 *)
    Table[Count[f[n], p_ /; Min[p] >= Count[p, Min[p]]], {n, 0, z}] (* A240177 *)

Formula

a(n) = A188216(n) - A096403(n), for n >= 0.

A240176 Number of partitions of n such that (least part) > (multiplicity of least part).

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 3, 5, 5, 8, 10, 13, 15, 21, 25, 31, 39, 50, 59, 75, 89, 111, 134, 164, 194, 240, 285, 344, 410, 493, 582, 699, 824, 981, 1157, 1369, 1606, 1901, 2223, 2613, 3054, 3579, 4166, 4871, 5658, 6590, 7645, 8877, 10264, 11900, 13733, 15868
Offset: 0

Views

Author

Clark Kimberling, Apr 02 2014

Keywords

Examples

			a(8) counts these 5 partitions:  8, 61, 53, 44, 332.
		

Crossrefs

Programs

  • Mathematica
    z = 60; f[n_] := f[n] = IntegerPartitions[n]; t1 = Table[Count[f[n], p_ /; Min[p] < Count[p, Min[p]]], {n, 0, z}]  (* A240175 *)
    t2 = Table[Count[f[n], p_ /; Min[p] <= Count[p, Min[p]]], {n, 0, z}] (* A188216 *)
    t3 = Table[Count[f[n], p_ /; Min[p] == Count[p, Min[p]]], {n, 0, z}] (* A096403 *)
    t4 = Table[Count[f[n], p_ /; Min[p] > Count[p, Min[p]]], {n, 0, z}] (* A240176 *)
    t5 = Table[Count[f[n], p_ /; Min[p] >= Count[p, Min[p]]], {n, 0, z}] (* A240177 *)

Formula

a(n) + A240175(n) + A096403(n) = A000041(n), for n >= 0.
Showing 1-2 of 2 results.