A240178 Number of partitions of n such that (least part) < (multiplicity of greatest part).
0, 0, 1, 1, 1, 2, 3, 4, 5, 7, 9, 13, 16, 22, 27, 36, 44, 59, 71, 93, 114, 144, 176, 223, 268, 336, 407, 502, 605, 744, 891, 1088, 1301, 1574, 1879, 2265, 2687, 3224, 3822, 4557, 5384, 6399, 7535, 8921, 10481, 12354, 14481, 17022, 19888, 23307, 27178, 31745
Offset: 0
Examples
a(6) counts these 3 partitions: 222, 2211, 111111.
Programs
-
Mathematica
z = 60; f[n_] := f[n] = IntegerPartitions[n]; Table[Count[f[n], p_ /; Min[p] < Count[p, Max[p]]], {n, 0, z}] (* A240178 *) Table[Count[f[n], p_ /; Min[p] <= Count[p, Max[p]]], {n, 0, z}] (* A240179 *) Table[Count[f[n], p_ /; Min[p] == Count[p, Max[p]]], {n, 0, z}] (* A240180 *) Table[Count[f[n], p_ /; Min[p] > Count[p, Max[p]]], {n, 0, z}] (* A240178, n>0 *) Table[Count[f[n], p_ /; Min[p] >= Count[p, Max[p]]], {n, 0, z}] (* A240179, n>0 *)
Comments