cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A240179 Number of partitions of n such that (least part) <= (multiplicity of greatest part).

Original entry on oeis.org

0, 1, 1, 2, 4, 5, 8, 11, 17, 23, 33, 43, 61, 79, 108, 140, 187, 238, 314, 397, 513, 648, 826, 1032, 1307, 1622, 2029, 2508, 3113, 3821, 4713, 5754, 7048, 8569, 10431, 12618, 15290, 18413, 22193, 26628, 31954, 38184, 45639, 54340, 64694, 76780, 91077, 107732
Offset: 0

Views

Author

Clark Kimberling, Apr 02 2014

Keywords

Comments

Also, for n >= 0, a(n) is the number of partitions of n such that (greatest part) >= (multiplicity of least part). For n >=1, a(n) is also the number of partitions of n such that (least part) >= (multiplicity of greatest part), as well as the number of partitions p of n such that min(p) = min(c(p)), where c = conjugate..

Examples

			a(6) counts these 8 partitions:  51, 411, 321, 3111, 222, 2211, 21111, 111111.
		

Crossrefs

Programs

  • Mathematica
    z = 60; f[n_] := f[n] = IntegerPartitions[n];
    Table[Count[f[n], p_ /; Min[p] < Count[p, Max[p]]], {n, 0, z}]  (* A240178 *)
    Table[Count[f[n], p_ /; Min[p] <= Count[p, Max[p]]], {n, 0, z}] (* A240179 *)
    Table[Count[f[n], p_ /; Min[p] == Count[p, Max[p]]], {n, 0, z}] (* A240180 *)
    Table[Count[f[n], p_ /; Min[p] > Count[p, Max[p]]], {n, 0, z}]  (* A240178, n>0 *)
    Table[Count[f[n], p_ /; Min[p] >= Count[p, Max[p]]], {n, 0, z}] (* A240179, n>0 *)

Formula

a(n) = A240178(n) + A240180(n), for n >= 0.
2*a(n) + A240180(n) = A000041(n) for n >= 0.

A240057 Number of partitions of n such that (greatest part) is not = (multiplicity of greatest part).

Original entry on oeis.org

0, 2, 3, 4, 6, 10, 14, 21, 28, 40, 53, 74, 97, 131, 171, 225, 290, 377, 480, 616, 779, 987, 1238, 1556, 1935, 2411, 2981, 3685, 4527, 5562, 6793, 8295, 10081, 12241, 14805, 17890, 21538, 25906, 31062, 37201, 44429, 53004, 63070, 74964, 88898, 105297
Offset: 1

Views

Author

Clark Kimberling, Apr 02 2014

Keywords

Comments

Let # denote "number of" and c(p) = conjugate of partitionp. Then
A240057(n) = # p such that min(p) not = max(c(p));
A039899(n) = # p such that min(p) < max(c(p));
A039900(n) = # p such that min(p) <= max(c(p));
A006141(n) = # p such that min(p) = max(c(p));
A003114(n) = # p such that min(p) > max(c(p));
A003016(n) = # p such that min(p) >= max(c(p));
A064173(n) = # p such that max(p) < max(c(p));
A064174(n) = # p such that max(p) <= max(c(p));
A047993(n) = # p such that max(p) = max(c(p)).
See A240178 for related sequences. - Clark Kimberling, Apr 11 2014

Examples

			a(9) = 28 counts all the 30 partitions of 9 except 333 and 2211111.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n<0, 0, `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))))
        end:
    a:= n->combinat[numbpart](n)-add(b(n-j^2, j-1), j=0..isqrt(n)):
    seq(a(n), n=1..50);  # Alois P. Heinz, Apr 03 2014
  • Mathematica
    z = 60; f[n_] := f[n] = IntegerPartitions[n];
    t1 = Table[Count[f[n], p_ /; Max[p] < Count[p, Max[p]]], {n, 0, z}]  (* A003106 *)
    t2 = Table[Count[f[n], p_ /; Max[p] <= Count[p, Max[p]]], {n, 0, z}] (* A003114 *)
    t3 = Table[Count[f[n], p_ /; Max[p] == Count[p, Max[p]]], {n, 0, z}] (* A006141 *)
    tt = Table[Count[f[n], p_ /; Max[p] != Count[p, Max[p]]], {n, 0, z}] (* A240057 *)
    t4 = Table[Count[f[n], p_ /; Max[p] > Count[p, Max[p]]], {n, 0, z}] (* A039899 *)
    t5 = Table[Count[f[n], p_ /; Max[p] >= Count[p, Max[p]]], {n, 0, z}] (* A039900 *)
    (* second program: *)
    b[n_, i_] := b[n, i] = If[n < 0, 0, If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[i > n, 0, b[n - i, i]]]]];
    a[n_] := PartitionsP[n] - Sum[b[n - j^2, j - 1], {j, 0, Sqrt[n]}];
    Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Aug 30 2016, after Alois P. Heinz *)

Formula

a(n) + A006141(n) = A000041(n) for n > 0.

A240180 Number of partitions of n such that (least part) = (multiplicity of greatest part).

Original entry on oeis.org

0, 1, 0, 1, 3, 3, 5, 7, 12, 16, 24, 30, 45, 57, 81, 104, 143, 179, 243, 304, 399, 504, 650, 809, 1039, 1286, 1622, 2006, 2508, 3077, 3822, 4666, 5747, 6995, 8552, 10353, 12603, 15189, 18371, 22071, 26570, 31785, 38104, 45419, 54213, 64426, 76596, 90710
Offset: 0

Views

Author

Clark Kimberling, Apr 02 2014

Keywords

Comments

Also the number of partitions p of n such that min(p) = min(conjugate(p)). Example:a(7) counts these 7 partitions: 61, 511, 421, 4111, 3211, 31111, 211111, of which the respective conjugates are 211111, 31111, 3211, 4111, 421, 511, 61. - Clark Kimberling, Apr 11 2014

Examples

			a(6) counts these 5 partitions:  51, 411, 321, 3111, 21111.
		

Crossrefs

Programs

  • Mathematica
    z = 60; f[n_] := f[n] = IntegerPartitions[n];
    Table[Count[f[n], p_ /; Min[p] < Count[p, Max[p]]], {n, 0, z}]  (* A240178 *)
    Table[Count[f[n], p_ /; Min[p] <= Count[p, Max[p]]], {n, 0, z}] (* A240179 *)
    Table[Count[f[n], p_ /; Min[p] == Count[p, Max[p]]], {n, 0, z}] (* A240180 *)
    Table[Count[f[n], p_ /; Min[p] > Count[p, Max[p]]], {n, 0, z}]  (* A240178, n>0 *)
    Table[Count[f[n], p_ /; Min[p] >= Count[p, Max[p]]], {n, 0, z}] (* A240179, n>0 *)

Formula

a(n) = A240179(n) - A240178(n), for n >= 0.
a(n) + 2*A240178(n) = A000041(n) for n >= 0.

A240182 Number of partitions of n such that (greatest part) <= (multiplicity of least part).

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 5, 4, 8, 10, 13, 15, 25, 25, 37, 46, 61, 70, 97, 112, 150, 177, 224, 270, 347, 407, 508, 611, 754, 895, 1106, 1304, 1594, 1892, 2283, 2708, 3262, 3835, 4595, 5421, 6452, 7574, 8993, 10530, 12445, 14564, 17123, 19992, 23465, 27302, 31931
Offset: 0

Views

Author

Clark Kimberling, Apr 02 2014

Keywords

Examples

			a(8) counts these 8 partitions:  41111, 32111, 311111, 2222, 22211, 221111, 2111111, 11111111.
		

Crossrefs

Programs

  • Mathematica
    z = 60; f[n_] := f[n] = IntegerPartitions[n];
    t1 = Table[Count[f[n], p_ /; Max[p] < Count[p, Min[p]]], {n, 0, z}]  (* A240178 except for n=0 *)
    t2 = Table[Count[f[n], p_ /; Max[p] <= Count[p, Min[p]]], {n, 0, z}] (* A240182 *)
    t3 = Table[Count[f[n], p_ /; Max[p] == Count[p, Min[p]]], {n, 0, z}] (* A240183 *)
    t4 = Table[Count[f[n], p_ /; Max[p] > Count[p, Min[p]]], {n, 0, z}] (* A240184 *)
    t5 = Table[Count[f[n], p_ /; Max[p] >= Count[p, Min[p]]], {n, 0, z}] (* A240179 *)

Formula

a(n) = A240178(n) + A240183(n), for n >= 1.
a(n) + A240179(n) = A000041(n) for n >= 0.

A240183 Number of partitions of n such that (greatest part) = (multiplicity of least part).

Original entry on oeis.org

0, 1, 0, 0, 2, 0, 2, 0, 3, 3, 4, 2, 9, 3, 10, 10, 17, 11, 26, 19, 36, 33, 48, 47, 79, 71, 101, 109, 149, 151, 215, 216, 293, 318, 404, 443, 575, 611, 773, 864, 1068, 1175, 1458, 1609, 1964, 2210, 2642, 2970, 3577, 3995, 4753, 5369, 6332, 7138, 8414, 9476
Offset: 0

Views

Author

Clark Kimberling, Apr 02 2014

Keywords

Examples

			a(8) counts these 3 partitions:  41111, 32111, 22211.
		

Crossrefs

Programs

  • Mathematica
    z = 60; f[n_] := f[n] = IntegerPartitions[n];
    t1 = Table[Count[f[n], p_ /; Max[p] < Count[p, Min[p]]], {n, 0, z}]  (* A240178 except for n=0 *)
    t2 = Table[Count[f[n], p_ /; Max[p] <= Count[p, Min[p]]], {n, 0, z}] (* A240182 *)
    t3 = Table[Count[f[n], p_ /; Max[p] == Count[p, Min[p]]], {n, 0, z}] (* A240183 *)
    t4 = Table[Count[f[n], p_ /; Max[p] > Count[p, Min[p]]], {n, 0, z}] (* A240184 *)
    t5 = Table[Count[f[n], p_ /; Max[p] >= Count[p, Min[p]]], {n, 0, z}] (* A240179 *)

Formula

A240178(n) + a(n) + A240184(n) = A000041(n) for n >= 0.

A240184 Number of partitions of n such that (greatest part) > (multiplicity of least part).

Original entry on oeis.org

0, 0, 1, 2, 2, 5, 6, 11, 14, 20, 29, 41, 52, 76, 98, 130, 170, 227, 288, 378, 477, 615, 778, 985, 1228, 1551, 1928, 2399, 2964, 3670, 4498, 5538, 6755, 8251, 10027, 12175, 14715, 17802, 21420, 25764, 30886, 37009, 44181, 52731, 62730, 74570, 88435, 104762
Offset: 0

Views

Author

Clark Kimberling, Apr 02 2014

Keywords

Examples

			a(6) counts these 6 partitions:  6, 51, 42, 411, 33, 321.
		

Crossrefs

Programs

  • Mathematica
    z = 60; f[n_] := f[n] = IntegerPartitions[n];
    t1 = Table[Count[f[n], p_ /; Max[p] < Count[p, Min[p]]], {n, 0, z}]  (* A240178 *)
    t2 = Table[Count[f[n], p_ /; Max[p] <= Count[p, Min[p]]], {n, 0, z}] (* A240182 *)
    t3 = Table[Count[f[n], p_ /; Max[p] == Count[p, Min[p]]], {n, 0, z}] (* A240183 *)
    t4 = Table[Count[f[n], p_ /; Max[p] > Count[p, Min[p]]], {n, 0, z}] (* A240184 *)
    t5 = Table[Count[f[n], p_ /; Max[p] >= Count[p, Min[p]]], {n, 0, z}] (* A240179 *)

Formula

A240178(n) + A240183(n) + a(n ) = A000041(n) for n >= 1.
Showing 1-6 of 6 results.