cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A240183 Number of partitions of n such that (greatest part) = (multiplicity of least part).

Original entry on oeis.org

0, 1, 0, 0, 2, 0, 2, 0, 3, 3, 4, 2, 9, 3, 10, 10, 17, 11, 26, 19, 36, 33, 48, 47, 79, 71, 101, 109, 149, 151, 215, 216, 293, 318, 404, 443, 575, 611, 773, 864, 1068, 1175, 1458, 1609, 1964, 2210, 2642, 2970, 3577, 3995, 4753, 5369, 6332, 7138, 8414, 9476
Offset: 0

Views

Author

Clark Kimberling, Apr 02 2014

Keywords

Examples

			a(8) counts these 3 partitions:  41111, 32111, 22211.
		

Crossrefs

Programs

  • Mathematica
    z = 60; f[n_] := f[n] = IntegerPartitions[n];
    t1 = Table[Count[f[n], p_ /; Max[p] < Count[p, Min[p]]], {n, 0, z}]  (* A240178 except for n=0 *)
    t2 = Table[Count[f[n], p_ /; Max[p] <= Count[p, Min[p]]], {n, 0, z}] (* A240182 *)
    t3 = Table[Count[f[n], p_ /; Max[p] == Count[p, Min[p]]], {n, 0, z}] (* A240183 *)
    t4 = Table[Count[f[n], p_ /; Max[p] > Count[p, Min[p]]], {n, 0, z}] (* A240184 *)
    t5 = Table[Count[f[n], p_ /; Max[p] >= Count[p, Min[p]]], {n, 0, z}] (* A240179 *)

Formula

A240178(n) + a(n) + A240184(n) = A000041(n) for n >= 0.

A240184 Number of partitions of n such that (greatest part) > (multiplicity of least part).

Original entry on oeis.org

0, 0, 1, 2, 2, 5, 6, 11, 14, 20, 29, 41, 52, 76, 98, 130, 170, 227, 288, 378, 477, 615, 778, 985, 1228, 1551, 1928, 2399, 2964, 3670, 4498, 5538, 6755, 8251, 10027, 12175, 14715, 17802, 21420, 25764, 30886, 37009, 44181, 52731, 62730, 74570, 88435, 104762
Offset: 0

Views

Author

Clark Kimberling, Apr 02 2014

Keywords

Examples

			a(6) counts these 6 partitions:  6, 51, 42, 411, 33, 321.
		

Crossrefs

Programs

  • Mathematica
    z = 60; f[n_] := f[n] = IntegerPartitions[n];
    t1 = Table[Count[f[n], p_ /; Max[p] < Count[p, Min[p]]], {n, 0, z}]  (* A240178 *)
    t2 = Table[Count[f[n], p_ /; Max[p] <= Count[p, Min[p]]], {n, 0, z}] (* A240182 *)
    t3 = Table[Count[f[n], p_ /; Max[p] == Count[p, Min[p]]], {n, 0, z}] (* A240183 *)
    t4 = Table[Count[f[n], p_ /; Max[p] > Count[p, Min[p]]], {n, 0, z}] (* A240184 *)
    t5 = Table[Count[f[n], p_ /; Max[p] >= Count[p, Min[p]]], {n, 0, z}] (* A240179 *)

Formula

A240178(n) + A240183(n) + a(n ) = A000041(n) for n >= 1.
Showing 1-2 of 2 results.