A240183 Number of partitions of n such that (greatest part) = (multiplicity of least part).
0, 1, 0, 0, 2, 0, 2, 0, 3, 3, 4, 2, 9, 3, 10, 10, 17, 11, 26, 19, 36, 33, 48, 47, 79, 71, 101, 109, 149, 151, 215, 216, 293, 318, 404, 443, 575, 611, 773, 864, 1068, 1175, 1458, 1609, 1964, 2210, 2642, 2970, 3577, 3995, 4753, 5369, 6332, 7138, 8414, 9476
Offset: 0
Examples
a(8) counts these 3 partitions: 41111, 32111, 22211.
Programs
-
Mathematica
z = 60; f[n_] := f[n] = IntegerPartitions[n]; t1 = Table[Count[f[n], p_ /; Max[p] < Count[p, Min[p]]], {n, 0, z}] (* A240178 except for n=0 *) t2 = Table[Count[f[n], p_ /; Max[p] <= Count[p, Min[p]]], {n, 0, z}] (* A240182 *) t3 = Table[Count[f[n], p_ /; Max[p] == Count[p, Min[p]]], {n, 0, z}] (* A240183 *) t4 = Table[Count[f[n], p_ /; Max[p] > Count[p, Min[p]]], {n, 0, z}] (* A240184 *) t5 = Table[Count[f[n], p_ /; Max[p] >= Count[p, Min[p]]], {n, 0, z}] (* A240179 *)