cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240192 T(n,k)=Number of nXk 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or three plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

1, 1, 2, 1, 5, 3, 1, 8, 12, 4, 1, 14, 37, 27, 7, 1, 26, 129, 138, 73, 10, 1, 50, 478, 771, 680, 154, 15, 1, 98, 1908, 5240, 7170, 2413, 358, 24, 1, 194, 7868, 40765, 91879, 44594, 10017, 872, 35, 1, 386, 32888, 336257, 1399773, 1005029, 333607, 43956, 1871, 54, 1
Offset: 1

Views

Author

R. H. Hardin, Apr 02 2014

Keywords

Comments

Table starts
..1....1......1.........1...........1............1.............1.............1
..2....5......8........14..........26...........50............98...........194
..3...12.....37.......129.........478.........1908..........7868.........32888
..4...27....138.......771........5240........40765........336257.......2843914
..7...73....680......7170.......91879......1399773......22849697.....385366572
.10..154...2413.....44594.....1005029.....28061567.....865984451...28244997476
.15..358..10017....333607....14022582....733907809...43398047802.2752449791995
.24..872..43956...2715035...206345434..19388521135.2070573220929
.35.1871.159668..17332017..2336659626.394134037392
.54.4438.681760.134735700.33576330306

Examples

			Some solutions for n=4 k=4
..2..0..0..0....2..0..0..0....2..0..0..0....2..0..0..0....2..0..0..0
..1..2..0..0....2..3..0..2....2..0..0..0....2..0..0..0....2..0..0..0
..2..1..0..2....2..3..3..1....2..0..3..0....2..3..0..2....2..0..3..2
..1..3..2..0....1..2..1..1....2..0..3..3....1..2..2..0....1..0..2..1
		

Crossrefs

Column 1 is A159288
Row 2 is A164094(n-2)

Formula

Empirical for column k:
k=1: a(n) = a(n-2) +2*a(n-3)
k=2: [order 13]
Empirical for row n:
n=1: a(n) = a(n-1)
n=2: a(n) = 3*a(n-1) -2*a(n-2) for n>3
n=3: a(n) = 9*a(n-1) -27*a(n-2) +29*a(n-3) +6*a(n-4) -32*a(n-5) +16*a(n-6) for n>9
n=4: [order 29] for n>34