cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A240223 Rectangular companion array to M(n,k), given in A240222, showing the end numbers N(n, k), k >= 1, for the Collatz operation (udd)^(n-1) ud, n >= 1, read by antidiagonals.

Original entry on oeis.org

2, 5, 2, 8, 11, 2, 11, 20, 29, 2, 14, 29, 56, 83, 2, 17, 38, 83, 164, 245, 2, 20, 47, 110, 245, 488, 731, 2, 23, 56, 137, 326, 731, 1460, 2189, 2, 26, 65, 164, 407, 974, 2189, 4376, 6563, 2, 29, 74, 191, 488, 1217, 2918, 6563, 13124, 19685, 2, 32, 83, 218, 569, 1460, 3647, 8750, 19685, 39368, 59051, 2
Offset: 0

Views

Author

Wolfdieter Lang, Apr 04 2014

Keywords

Comments

The companion array and triangle for the start numbers M(n, k) is given in A240222.
For the Collatz operations u (for 'up') and d (for 'down') see the comment on A240222, also for links, especially for the M. Trümper paper.

Examples

			The rectangular array N(n, k) begins
  n\k 0      1       2       3       4       5 ...
  1:  2      5       8      11      14      17
  2:  2     11      20      29      38      47
  3:  2     29      56      83     110     137
  4:  2     83     164     245     326     407
  5:  2    245     488     731     974    1217
  6:  2    731    1460    2189    2918    3647
  7:  2   2189    4376    6563    8750   10937
  8:  2   6563   13124   19685   26246   32807
  9:  2  19685   39368   59051   78734   98417
  10: 2  59051  118100  177149  236198  295247
  ...
For more columns see the link.
The triangle TN(m, n) begins (zeros are not shown):
  m\n  1  2   3   4    5    6    7 ...
  0:   2
  1:   5  2
  2:   8 11   2
  3:  11 20  29   2
  4:  14 29  56  83    2
  5:  17 38  83 164  245    2
  6:  20 47 110 245  488  731    2
  ...
For more rows see the link.
n=1, ud, k=0: M(1, 0) = 1, N(1, 0) = TN(0, 1) = 2 with the Collatz sequence [1, 4, 2] of length 3.
n=1, ud, k=2: M(1, 2) = 5, N(1, 2) = TN(2, 1) = 8 with the Collatz sequence [5, 16, 8] of length 3.
n=2, uddud, k=0: M(2, 0) = 1, Ne(2, 0) = TN(1, 2) = 2 with the Collatz sequence [1, 4, 2, 1, 4, 2, 1, 4, 2] of length 9.
		

Crossrefs

Cf. A238475, A238476, A239126, A239127, A240222, A016789 (first row of N), A017185 (second row of N).

Formula

The array: N(n, k) = 2 + 3^n*k for n >= 1 and k >= 0.
The triangle: TN(m, n) = N(n,m-n+1) = 2 + 3^n*(m-n+1) for m+1 >= n >= 1 and 0 for m+1 < n.
Showing 1-1 of 1 results.