A240228
Multiplicities for the representation of even numbers as a balanced sum of three distinct nonzero squares.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 1
The first even number with two different representations is A240227(20) = 182. From 1^2 + 10^2 + 9^2 and 5^2 + 11^2 + 6^2. See the examples under A240227.
A236300
Numbers n of the form x^3 + y^3 + z^3 - 3*x*y*z for x,y,z >= 0, where x + y + z < n.
Original entry on oeis.org
8, 9, 16, 18, 20, 27, 28, 32, 35, 36, 40, 44, 45, 49, 52, 54, 56, 63, 64, 65, 68, 70, 72, 76, 77, 80, 81, 88, 90, 91, 92, 98, 99, 100, 104, 108, 112, 116, 117, 119, 124, 125, 126, 128, 130, 133, 135, 136, 140, 143, 144, 148, 152, 153, 154, 160, 161, 162, 164, 169
Offset: 1
From _Wolfdieter Lang_, Apr 30 2014: (Start)
The numbers of type (i) are seq((2*x+z)*(z-x)^2, z=0..(x-2)) (if x >= 2) and seq((2*x+z)*(z-x)^2, z >= (x+2)) for x = 0, 1, 2, ... E.g., x = 3: 54, 28, 44, and 108, 208, 350, 540, 784, 1088, 1458, 1900, 2420, 3024, ...
The numbers of type (iia) are [seq(9*y*(y-z)^2, y >= 1+z)] for z = 0, 1, 2, ... E.g., z=3: 36, 180, 486, 1008, 1800, 2916, 4410, ...
The numbers of type (iib) come from the even members 14, 26, 30, 38, 42, 46, 50, ... of A025442 (each with multiplicity 1) except of 30 (as explained above in a comment), 46 with 1, 3, 6 which is out, and also 50 with 3, 4, 5. 7*14/2 = 49 (see the comment above); 10*26/2 = 130 from (u, v, w) = (1, 4, 3) and [x, y, z] = [5, 4, 1]; 11*38/2 = 209 from (2, 5, 3) and [6, 4, 1]; 12*42/2 = 252 from (1, 5, 4) and [6, 5, 1]; ...
(End)
Showing 1-2 of 2 results.
Comments