A327661 Least number k > n - 2 such that k*n^k - 1 is prime.
3, 2, 2, 3, 8, 19, 18, 7, 10, 11, 252, 43, 563528, 98, 14, 167, 18, 28, 410, 44, 200, 140, 29028, 124, 68, 79, 2420, 47, 26850, 63, 2454, 140, 42, 164, 38, 62, 740, 67, 448, 51, 84, 135, 404882, 43, 84, 140, 140, 115, 710, 2390, 46640, 261, 60, 72, 2064, 414
Offset: 1
Examples
To find a(11), consider numbers k*11^k - 1 where k > 9. The first time it is prime, is for k = 252, so a(11) = 252.
Links
- Jeppe Stig Nielsen, Table of n, a(n) for n = 1..144
- Chris K. Caldwell, The Top Twenty: Generalized Woodall.
Programs
-
PARI
for(b=1,+oo,for(k=b-1,+oo,if(ispseudoprime(k*b^k-1),print1(k,", ");next(2))))
Comments