cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240240 Consider primitive Heronian triangles with integer area and with sides {m, m+1, c}, where c > m+1. The sequence gives the possible values of m.

Original entry on oeis.org

3, 9, 13, 19, 20, 33, 51, 65, 73, 99, 119, 129, 163, 170, 174, 193, 201, 203, 220, 243, 260, 269, 287, 289, 339, 362, 377, 393, 450, 451, 513, 532, 559, 579, 615, 649, 696, 702, 714, 723, 740, 771, 801, 883, 909, 940, 969, 975, 1059, 1112, 1153, 1155, 1156, 1164, 1251, 1299, 1325, 1332, 1353, 1424, 1455, 1459, 1569, 1605, 1615, 1683, 1690, 1716, 1801, 1869, 1919, 1923
Offset: 1

Views

Author

Zak Seidov, Apr 03 2014

Keywords

Comments

Corresponding values of c are 5, 17, 15, 37, 29, 65, 101, 109, 145.
And corresponding values of area/6 are 1, 6, 14, 19, 35, 44, 85, 330, 146, 231, 1190.
The sequence includes all terms of A016064 (where c = m+2) except for the first term, 1 (case with zero area).
Note that in all cases c is odd and m+2 <= c < 2m+1.

Examples

			First triangle has sides (3,4,5) and area 6.
2nd triangle has sides (9,10,17) and area 36.
3rd triangle has sides (13,14,15) and area 84.
		

Crossrefs

Programs

  • Mathematica
    re=Reap[Do[a=m;b=m+1;Do[s=(a+b+c)/2;area=Sqrt[s(s-a)(s-b)(s-c)];If[IntegerQ[area],Sow[{a,b,c,area}];Break[]],{c,2m-1,m+2,-2 }],{m,3,2000}]][[2,1]];#[[1]]&/@ re