A240240 Consider primitive Heronian triangles with integer area and with sides {m, m+1, c}, where c > m+1. The sequence gives the possible values of m.
3, 9, 13, 19, 20, 33, 51, 65, 73, 99, 119, 129, 163, 170, 174, 193, 201, 203, 220, 243, 260, 269, 287, 289, 339, 362, 377, 393, 450, 451, 513, 532, 559, 579, 615, 649, 696, 702, 714, 723, 740, 771, 801, 883, 909, 940, 969, 975, 1059, 1112, 1153, 1155, 1156, 1164, 1251, 1299, 1325, 1332, 1353, 1424, 1455, 1459, 1569, 1605, 1615, 1683, 1690, 1716, 1801, 1869, 1919, 1923
Offset: 1
Keywords
Examples
First triangle has sides (3,4,5) and area 6. 2nd triangle has sides (9,10,17) and area 36. 3rd triangle has sides (13,14,15) and area 84.
Programs
-
Mathematica
re=Reap[Do[a=m;b=m+1;Do[s=(a+b+c)/2;area=Sqrt[s(s-a)(s-b)(s-c)];If[IntegerQ[area],Sow[{a,b,c,area}];Break[]],{c,2m-1,m+2,-2 }],{m,3,2000}]][[2,1]];#[[1]]&/@ re
Comments