A240264 Decimal expansion of Sum_{n >= 1} (-1)^(n+1)*H(n,2)/n^2, where H(n,2) is the n-th harmonic number of order 2.
6, 3, 1, 9, 6, 6, 1, 9, 7, 8, 3, 8, 1, 6, 7, 9, 0, 6, 6, 6, 2, 4, 4, 8, 2, 3, 2, 0, 1, 5, 2, 7, 5, 3, 1, 8, 1, 5, 6, 6, 7, 1, 3, 7, 1, 6, 5, 8, 1, 7, 2, 7, 5, 5, 5, 1, 5, 2, 6, 0, 5, 6, 7, 9, 6, 5, 4, 1, 1, 7, 6, 9, 2, 0, 9, 4, 1, 5, 6, 9, 6, 2, 9, 4, 2, 9, 3, 3, 6, 4, 7, 8, 5, 5, 6, 9, 1, 4, 3, 0
Offset: 0
Examples
0.631966197838...
References
- B. C. Berndt, Ramanujan's Notebooks Part I, Springer-Verlag,
Links
- Eric Weisstein's World of Mathematics, Harmonic Number
Programs
-
Mathematica
Zeta[3] - Pi^2/12*Log[2] // RealDigits[#, 10, 100]& // First
-
PARI
zeta(3)-log(2)*Pi^2/12 \\ Charles R Greathouse IV, Apr 03 2014
Formula
Equals zeta(3) - Pi^2/12*log(2).
Let a(p,q) = Sum_{n >= 1} (-1)^(n+1)*H(n,p)/n^q, then A076788 is a(1,1), A233090 is a(1,2) and this sequence is a(2,1).
Equals Sum_{n >= 1} (1/2)^n * H(n,1)/n^2, where H(n,1) = Sum_{k = 1..n} 1/k. See Berndt, p. 258. - Peter Bala, Oct 28 2021