cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240284 T(n,k)=Number of nXk 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

1, 2, 2, 2, 8, 3, 4, 19, 19, 4, 4, 76, 80, 38, 7, 8, 181, 570, 262, 114, 10, 8, 741, 2574, 3457, 1461, 251, 15, 16, 1779, 20764, 28654, 33183, 5443, 612, 24, 16, 7308, 97348, 443168, 484146, 218658, 24490, 1656, 35, 32, 17561, 802835, 3980245, 13490093, 5646644
Offset: 1

Views

Author

R. H. Hardin, Apr 03 2014

Keywords

Comments

Table starts
..1....2.......2.........4............4.............8..............8
..2....8......19........76..........181...........741...........1779
..3...19......80.......570.........2574.........20764..........97348
..4...38.....262......3457........28654........443168........3980245
..7..114....1461.....33183.......484146......13490093......224906182
.10..251....5443....218658......5646644.....281488213.....8597299482
.15..612...24490...1851080.....88953626....8199368365...463717321235
.24.1656..117962..15760838...1357879302..225885684501.23104690637116
.35.3758..459193.110599613..17350066110.5291794810655
.54.9630.2147788.945852472.272318368893

Examples

			Some solutions for n=4 k=4
..3..1..3..3....3..3..1..1....3..1..3..3....3..1..3..1....3..1..3..1
..3..1..3..2....3..2..1..2....3..1..0..0....3..2..0..1....2..2..2..0
..3..1..3..2....2..0..2..2....2..2..2..0....3..2..3..2....2..0..0..1
..2..2..2..0....3..1..0..0....3..1..0..0....2..2..3..3....3..3..0..2
		

Crossrefs

Column 1 is A159288
Row 1 is A016116

Formula

Empirical for column k:
k=1: a(n) = a(n-2) +2*a(n-3)
k=2: [order 15]
Empirical for row n:
n=1: a(n) = 2*a(n-2)
n=2: a(n) = 12*a(n-2) -24*a(n-4) +31*a(n-6) -16*a(n-8)
n=3: [order 48] for n>51