A240302 Number of partitions of n such that (maximal multiplicity of parts) > (multiplicity of the maximal part).
0, 0, 0, 0, 1, 2, 3, 7, 10, 16, 23, 35, 47, 70, 93, 126, 169, 228, 294, 391, 501, 648, 827, 1057, 1329, 1683, 2105, 2631, 3266, 4056, 4992, 6156, 7538, 9221, 11234, 13664, 16549, 20033, 24152, 29077, 34904, 41844, 50012, 59710, 71100, 84541, 100318, 118869
Offset: 0
Examples
a(7) counts these 7 partitions: 511, 4111, 322, 3211, 31111, 22111, 211111.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(n=0, `if`(k=0, 1, 0), `if`(i<1, 0, b(n, i-1, k) +add(b(n-i*j, i-1, `if`(k=-1, j, `if`(k=0, 0, `if`(j>k, 0, k)))), j=1..n/i))) end: a:= n-> b(n$2, -1): seq(a(n), n=0..70); # Alois P. Heinz, Apr 12 2014
-
Mathematica
z = 60; f[n_] := f[n] = IntegerPartitions[n]; m[p_] := Max[Map[Length, Split[p]]] (* maximal multiplicity *) Table[Count[f[n], p_ /; m[p] == Count[p, Max[p]]], {n, 0, z}] (* A171979 *) Table[Count[f[n], p_ /; m[p] > Count[p, Max[p]]], {n, 0, z}] (* A240302 *) (* Second program: *) b[n_, i_, k_] := b[n, i, k] = If[n == 0, If[k == 0, 1, 0], If[i < 1, 0, b[n, i - 1, k] + Sum[b[n - i*j, i - 1, If[k == -1, j, If[k == 0, 0, If[j > k, 0, k]]]], {j, 1, n/i}]]]; a[n_] := b[n, n, -1]; a /@ Range[0, 70] (* Jean-François Alcover, Jun 05 2021, after Alois P. Heinz *)