A382077
Number of integer partitions of n that can be partitioned into a set of sets.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 6, 9, 13, 17, 25, 33, 44, 59, 77, 100, 134, 171, 217, 283, 361, 449, 574, 721, 900, 1126, 1397, 1731, 2143, 2632, 3223, 3961, 4825, 5874, 7131, 8646, 10452, 12604, 15155, 18216, 21826, 26108, 31169, 37156, 44202, 52492, 62233, 73676, 87089, 102756, 121074
Offset: 0
For y = (3,2,2,2,1,1,1), we have the multiset partition {{1},{2},{1,2},{1,2,3}}, so y is counted under a(12).
The a(1) = 1 through a(8) = 13 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(2,1) (3,1) (3,2) (4,2) (4,3) (5,3)
(2,1,1) (4,1) (5,1) (5,2) (6,2)
(2,2,1) (3,2,1) (6,1) (7,1)
(3,1,1) (4,1,1) (3,2,2) (3,3,2)
(2,2,1,1) (3,3,1) (4,2,2)
(4,2,1) (4,3,1)
(5,1,1) (5,2,1)
(3,2,1,1) (6,1,1)
(3,2,2,1)
(3,3,1,1)
(4,2,1,1)
(3,2,1,1,1)
Factorizations of this type are counted by
A050345.
Normal multiset partitions of this type are counted by
A116539.
The MM-numbers of these multiset partitions are
A302494.
Twice-partitions of this type are counted by
A358914.
For distinct block-sums instead of blocks we have
A381992, ranked by
A382075.
For normal multisets instead of integer partitions we have
A382214, complement
A292432.
A050320 counts multiset partitions of prime indices into sets.
A050326 counts multiset partitions of prime indices into distinct sets.
A265947 counts refinement-ordered pairs of integer partitions.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]& /@ sps[Range[Length[set]]]];
Table[Length[Select[IntegerPartitions[n], Length[Select[mps[#],UnsameQ@@#&&And@@UnsameQ@@@#&]]>0&]],{n,0,9}]
A240309
Number of partitions p of n such that (maximal multiplicity of the parts of p) > (number of distinct parts of p).
Original entry on oeis.org
0, 0, 1, 1, 2, 2, 5, 6, 9, 13, 17, 23, 33, 42, 59, 76, 100, 128, 173, 212, 275, 350, 447, 552, 704, 870, 1094, 1346, 1672, 2048, 2540, 3084, 3775, 4595, 5592, 6764, 8180, 9853, 11865, 14250, 17075, 20404, 24376, 29024, 34498, 41012, 48550, 57463, 67873
Offset: 0
a(6) counts these 5 partitions: 33, 3111, 222, 21111, 111111.
-
z = 60; f[n_] := f[n] = IntegerPartitions[n]; m[p_] := Max[Map[Length, Split[p]]] (* maximal multiplicity *); d[p_] := d[p] = Length[DeleteDuplicates[p]] (* number of distinct terms *)
t1 = Table[Count[f[n], p_ /; m[p] < d[p]], {n, 0, z}] (* A240305 *)
t2 = Table[Count[f[n], p_ /; m[p] <= d[p]], {n, 0, z}] (* A240306 *)
t3 = Table[Count[f[n], p_ /; m[p] == d[p]], {n, 0, z}] (* A239964 *)
t4 = Table[Count[f[n], p_ /; m[p] >= d[p]], {n, 0, z}] (* A240308 *)
t5 = Table[Count[f[n], p_ /; m[p] > d[p]], {n, 0, z}] (* A240309 *)
A240305
Number of partitions p of n such that (maximal multiplicity of the parts of p) < (number of distinct parts of p).
Original entry on oeis.org
1, 0, 0, 1, 1, 2, 3, 5, 7, 12, 14, 21, 29, 38, 50, 70, 90, 117, 156, 196, 253, 324, 411, 514, 650, 809, 1015, 1259, 1555, 1917, 2365, 2898, 3536, 4318, 5248, 6365, 7691, 9297, 11180, 13446, 16115, 19296, 23019, 27474, 32653, 38838, 46002, 54511, 64371, 76012
Offset: 0
a(6) counts these 3 partitions: 51, 42, 321.
-
z = 60; f[n_] := f[n] = IntegerPartitions[n]; m[p_] := Max[Map[Length, Split[p]]] (* maximal multiplicity *); d[p_] := d[p] = Length[DeleteDuplicates[p]] (* number of distinct terms *)
t1 = Table[Count[f[n], p_ /; m[p] < d[p]], {n, 0, z}] (* A240305 *)
t2 = Table[Count[f[n], p_ /; m[p] <= d[p]], {n, 0, z}] (* A240306 *)
t3 = Table[Count[f[n], p_ /; m[p] == d[p]], {n, 0, z}] (* A239964 *)
t4 = Table[Count[f[n], p_ /; m[p] >= d[p]], {n, 0, z}] (* A240308 *)
t5 = Table[Count[f[n], p_ /; m[p] > d[p]], {n, 0, z}] (* A240309 *)
A240308
Number of partitions p of n such that (maximal multiplicity of the parts of p) >= (number of distinct parts of p).
Original entry on oeis.org
0, 1, 2, 2, 4, 5, 8, 10, 15, 18, 28, 35, 48, 63, 85, 106, 141, 180, 229, 294, 374, 468, 591, 741, 925, 1149, 1421, 1751, 2163, 2648, 3239, 3944, 4813, 5825, 7062, 8518, 10286, 12340, 14835, 17739, 21223, 25287, 30155, 35787, 42522, 50296, 59556, 70243, 82902
Offset: 0
a(6) counts these 8 partitions: 6, 411, 33, 3111, 222, 2211, 21111, 111111.
-
z = 60; f[n_] := f[n] = IntegerPartitions[n]; m[p_] := Max[Map[Length, Split[p]]] (* maximal multiplicity *); d[p_] := d[p] = Length[DeleteDuplicates[p]] (* number of distinct terms *)
t1 = Table[Count[f[n], p_ /; m[p] < d[p]], {n, 0, z}] (* A240305 *)
t2 = Table[Count[f[n], p_ /; m[p] <= d[p]], {n, 0, z}] (* A240306 *)
t3 = Table[Count[f[n], p_ /; m[p] == d[p]], {n, 0, z}] (* A239964 *)
t4 = Table[Count[f[n], p_ /; m[p] >= d[p]], {n, 0, z}] (* A240308 *)
t5 = Table[Count[f[n], p_ /; m[p] > d[p]], {n, 0, z}] (* A240309 *)
Showing 1-4 of 4 results.
Comments