A240308 Number of partitions p of n such that (maximal multiplicity of the parts of p) >= (number of distinct parts of p).
0, 1, 2, 2, 4, 5, 8, 10, 15, 18, 28, 35, 48, 63, 85, 106, 141, 180, 229, 294, 374, 468, 591, 741, 925, 1149, 1421, 1751, 2163, 2648, 3239, 3944, 4813, 5825, 7062, 8518, 10286, 12340, 14835, 17739, 21223, 25287, 30155, 35787, 42522, 50296, 59556, 70243, 82902
Offset: 0
Examples
a(6) counts these 8 partitions: 6, 411, 33, 3111, 222, 2211, 21111, 111111.
Programs
-
Mathematica
z = 60; f[n_] := f[n] = IntegerPartitions[n]; m[p_] := Max[Map[Length, Split[p]]] (* maximal multiplicity *); d[p_] := d[p] = Length[DeleteDuplicates[p]] (* number of distinct terms *) t1 = Table[Count[f[n], p_ /; m[p] < d[p]], {n, 0, z}] (* A240305 *) t2 = Table[Count[f[n], p_ /; m[p] <= d[p]], {n, 0, z}] (* A240306 *) t3 = Table[Count[f[n], p_ /; m[p] == d[p]], {n, 0, z}] (* A239964 *) t4 = Table[Count[f[n], p_ /; m[p] >= d[p]], {n, 0, z}] (* A240308 *) t5 = Table[Count[f[n], p_ /; m[p] > d[p]], {n, 0, z}] (* A240309 *)