A240358 Decimal expansion of 'c', a constant linked to an estimate of density of zeros of an entire function of exponential type.
1, 5, 0, 8, 8, 7, 9, 5, 6, 1, 5, 3, 8, 3, 1, 9, 9, 2, 8, 9, 0, 9, 8, 8, 4, 4, 8, 8, 1, 6, 0, 5, 7, 8, 5, 7, 3, 6, 9, 4, 2, 7, 8, 5, 8, 9, 0, 4, 7, 7, 6, 9, 1, 9, 1, 4, 7, 2, 0, 7, 8, 3, 5, 9, 7, 2, 6, 4, 6, 0, 5, 7, 6, 5, 5, 7, 9, 9, 9, 2, 4, 5, 8, 9, 2, 6, 2, 9, 3, 3, 6, 7, 3, 6, 1, 9, 9, 4, 4, 1
Offset: 1
Examples
1.508879561538319928909884488160578573694278589...
Links
- Alexandre Eremenko and Peter Yuditskii, An extremal problem for a class of entire functions
Crossrefs
Cf. A033259.
Programs
-
Mathematica
FindRoot[Log[c + Sqrt[c^2 + 1]] == Sqrt[1 + 1/c^2], {c, 3/2}, WorkingPrecision -> 100][[1, 2]] // RealDigits[#, 10, 100]& // First
Formula
Solution to log(c + sqrt(c^2 + 1)) = sqrt(1 + 1/c^2).
Equals 1/A033259. - Robert FERREOL, Jun 16 2025