cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240434 Binomial transform of the sum of the first n even squares (A002492).

Original entry on oeis.org

0, 4, 28, 128, 480, 1600, 4928, 14336, 39936, 107520, 281600, 720896, 1810432, 4472832, 10895360, 26214400, 62390272, 147062784, 343670784, 796917760, 1835008000, 4198498304, 9550430208, 21609054208, 48653926400, 109051904000, 243403849728, 541165879296
Offset: 0

Views

Author

Wesley Ivan Hurt, Apr 04 2014

Keywords

Comments

The inverse binomial transform of a(n) is A002492(n) = 2n(n+1)(2n+1)/3.

Crossrefs

Cf. A002492.

Programs

  • Mathematica
    Table[Sum[2 Binomial[n, k] k (k + 1) (2 k + 1)/3, {k, 0, n}], {n, 0, 30}]

Formula

Conjecture: a(n) = (2^(n-1)*n*(5+6*n+n^2))/3. G.f.: -4*x*(x-1) / (2*x-1)^4. - Colin Barker, Apr 06 2014
a(n) = (-1)^n * Sum_{k=0..floor(n/2)} binomial(n-k, k) * (-4)^(n-k) * (n-k). - Joseph M. Shunia, Jul 20 2022