cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240441 Number of ways to place 4 points on a triangular grid of side n so that no three of these points are vertices of an equilateral triangle of any orientation.

Original entry on oeis.org

0, 0, 3, 114, 969, 4773, 17415, 52125, 135375, 315675, 676200, 1352085, 2553558, 4595934, 7937874, 13229118, 21369330, 33579450, 51487425, 77229900, 113571975, 164046795, 233117313, 326362179, 450688329, 614572413, 828333870, 1104441975, 1457859900, 1906428300
Offset: 1

Views

Author

Heinrich Ludwig, Apr 05 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n^8+4*n^7-14*n^6-56*n^5+61*n^4+220*n^3-84*n^2-240*n)/384 +If[EvenQ[n],0,(6*n+3)/32],{n,1,20}] (* Vaclav Kotesovec, Apr 05 2014 after Heinrich Ludwig *)
  • PARI
    concat([0,0], Vec(-3*x^3*(x^4+31*x^3+76*x^2+31*x+1)/((x-1)^9*(x+1)^2) + O(x^100))) \\ Colin Barker, Apr 05 2014

Formula

a(n) = (n^8 + 4*n^7 - 14*n^6 - 56*n^5 + 61*n^4 + 220*n^3 - 84*n^2 - 240*n)/384 + IF(MOD(n, 2) = 1)*(6*n + 3)/32.
G.f.: -3*x^3*(x^4+31*x^3+76*x^2+31*x+1) / ((x-1)^9*(x+1)^2). - Colin Barker, Apr 05 2014