cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A240439 Triangle T(n, k) = Numbers of ways to place k points on a triangular grid of side n so that no three of them are vertices of an equilateral triangle of any orientation. Triangle read by rows.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 6, 15, 15, 3, 1, 10, 45, 105, 114, 39, 3, 1, 15, 105, 420, 969, 1194, 654, 102, 3, 1, 21, 210, 1260, 4773, 11259, 15615, 11412, 3663, 342, 15, 1, 28, 378, 3150, 17415, 64776, 159528, 250233, 234609, 119259, 28395, 2613, 69, 1, 36, 630, 6930
Offset: 1

Views

Author

Heinrich Ludwig, Apr 05 2014

Keywords

Comments

The triangle T(n, k) is irregularly shaped: 0 <= k <= A240114(n). First row corresponds to n = 1.
The maximal number of points that can be placed on a triangular grid of side n so that no three of them form an equilateral triangle is given by A240114(n).

Examples

			The triangle begins:
  1,  1;
  1,  3,   3;
  1,  6,  15,   15,    3;
  1, 10,  45,  105,  114,    39,     3;
  1, 15, 105,  420,  969,  1194,   654,   102,    3;
  1, 21, 210, 1260, 4773, 11259, 15615, 11412, 3663, 342, 15;
There are T(5, 8) = 3 ways to place 8 points (x) on a triangular grid of side 5 under the conditions mentioned above:
          .                x                x
         x x              x .              . x
        x . x            x . .            . . x
       x . . x          x . . .          . . . x
      x . . . x        . x x x x        x x x x .
		

Crossrefs

column 2 is A000217,
column 3 is A050534,
column 4 is A240440,
column 5 is A240441,
column 6 is A240442.

A240440 Number of ways to place 3 points on a triangular grid of side n so that they are not vertices of an equilateral triangle of any orientation.

Original entry on oeis.org

0, 0, 15, 105, 420, 1260, 3150, 6930, 13860, 25740, 45045, 75075, 120120, 185640, 278460, 406980, 581400, 813960, 1119195, 1514205, 2018940, 2656500, 3453450, 4440150, 5651100, 7125300, 8906625, 11044215, 13592880, 16613520, 20173560, 24347400, 29216880
Offset: 1

Views

Author

Heinrich Ludwig, Apr 08 2014

Keywords

Comments

a(n) = 15 * A000579(n+3).
a(n) = A001498(n,3), the fourth column of coefficients of Bessel polynomials. - Ran Pan, Dec 03 2015

Crossrefs

If one of the initial zeros is omitted, this is a row of the array in A129533.

Programs

  • Magma
    [(n+3)*(n+2)*(n+1)*n*(n-1)*(n-2)/48 : n in [1..50]]; // Wesley Ivan Hurt, Dec 03 2015
    
  • Maple
    A240440:=n->(n+3)*(n+2)*(n+1)*n*(n-1)*(n-2)/48; seq(A240440(n), n=1..50); # Wesley Ivan Hurt, Apr 08 2014
  • Mathematica
    Table[(n+3)(n+2)(n+1)n(n-1)(n-2)/48, {n, 50}] (* Wesley Ivan Hurt, Apr 08 2014 *)
    CoefficientList[Series[15 x^2/(1 - x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 19 2014 *)
  • PARI
    Vec(15*x^3/(1-x)^7 + O(x^100)) \\ Colin Barker, Apr 18 2014
    
  • PARI
    vector(100,n,(n^2-1)*(n^2-4)*(n+3)*n/48) \\ Derek Orr, Dec 24 2015

Formula

a(n) = (n+3)*(n+2)*(n+1)*n*(n-1)*(n-2)/48.
G.f.: 15*x^3 / (1-x)^7. - Colin Barker, Apr 18 2014
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7) for n>7. - Wesley Ivan Hurt, Dec 03 2015

A240442 Number of ways to place 5 points on a triangular grid of side n so that no three of these points are vertices of an equilateral triangle of any orientation.

Original entry on oeis.org

0, 39, 1194, 11259, 64776, 275805, 957516, 2859768, 7606821, 18444537, 41458599, 87464157, 174846963, 333687378, 611613150, 1081890447
Offset: 3

Views

Author

Heinrich Ludwig, Apr 08 2014

Keywords

Crossrefs

Formula

a(n) = (n^10 + 5*n^9 - 30*n^8 - 150*n^7)/3840 + O(n^6).

Extensions

a(16)-a(18) from Heinrich Ludwig, Apr 25 2014

A243143 Number of inequivalent (mod D_3) ways to place 4 points on a triangular grid of side n so that they are not vertices of an equilateral triangle of any orientation.

Original entry on oeis.org

1, 22, 170, 816, 2947, 8765, 22703, 52823, 113042, 225817, 426299, 766905, 1324282, 2206478, 3563770, 5599258, 8584775, 12875840, 18934040, 27347390, 38860741, 54402707, 75125825, 102441321, 138070912, 184090795, 242997153, 317760863, 411908932, 529591532, 675681764
Offset: 3

Views

Author

Heinrich Ludwig, May 30 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Drop[CoefficientList[Series[-x^3*(3*x^10 - 10*x^9 + 19*x^8 - 13*x^7 + 102*x^6 + 105*x^5 + 144*x^4 + 125*x^3 + 67*x^2 + 17*x + 1) / ((x-1)^9*(x+1)^4*(x^2+1)), {x, 0, 40}], x],3] (* Vaclav Kotesovec, May 31 2014 after Colin Barker *)

Formula

a(n) = (n^8 + 4*n^7 - 14*n^6 - 56*n^5 + 136*n^4 - 104*n^3 + 552*n^2 - 672*n)/2304 + IF(MOD(n, 2) = 1)*(28*n^3 - 198*n^2 + 296*n + 21)/768 + IF(MOD(n-1, 4) <= 1)*(-1/8).
G.f.: -x^3*(3*x^10 -10*x^9 +19*x^8 -13*x^7 +102*x^6 +105*x^5 +144*x^4 +125*x^3 +67*x^2 +17*x +1) / ((x -1)^9*(x +1)^4*(x^2 +1)). - Colin Barker, May 30 2014
Showing 1-4 of 4 results.