cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A240440 Number of ways to place 3 points on a triangular grid of side n so that they are not vertices of an equilateral triangle of any orientation.

Original entry on oeis.org

0, 0, 15, 105, 420, 1260, 3150, 6930, 13860, 25740, 45045, 75075, 120120, 185640, 278460, 406980, 581400, 813960, 1119195, 1514205, 2018940, 2656500, 3453450, 4440150, 5651100, 7125300, 8906625, 11044215, 13592880, 16613520, 20173560, 24347400, 29216880
Offset: 1

Views

Author

Heinrich Ludwig, Apr 08 2014

Keywords

Comments

a(n) = 15 * A000579(n+3).
a(n) = A001498(n,3), the fourth column of coefficients of Bessel polynomials. - Ran Pan, Dec 03 2015

Crossrefs

If one of the initial zeros is omitted, this is a row of the array in A129533.

Programs

  • Magma
    [(n+3)*(n+2)*(n+1)*n*(n-1)*(n-2)/48 : n in [1..50]]; // Wesley Ivan Hurt, Dec 03 2015
    
  • Maple
    A240440:=n->(n+3)*(n+2)*(n+1)*n*(n-1)*(n-2)/48; seq(A240440(n), n=1..50); # Wesley Ivan Hurt, Apr 08 2014
  • Mathematica
    Table[(n+3)(n+2)(n+1)n(n-1)(n-2)/48, {n, 50}] (* Wesley Ivan Hurt, Apr 08 2014 *)
    CoefficientList[Series[15 x^2/(1 - x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 19 2014 *)
  • PARI
    Vec(15*x^3/(1-x)^7 + O(x^100)) \\ Colin Barker, Apr 18 2014
    
  • PARI
    vector(100,n,(n^2-1)*(n^2-4)*(n+3)*n/48) \\ Derek Orr, Dec 24 2015

Formula

a(n) = (n+3)*(n+2)*(n+1)*n*(n-1)*(n-2)/48.
G.f.: 15*x^3 / (1-x)^7. - Colin Barker, Apr 18 2014
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7) for n>7. - Wesley Ivan Hurt, Dec 03 2015

A240441 Number of ways to place 4 points on a triangular grid of side n so that no three of these points are vertices of an equilateral triangle of any orientation.

Original entry on oeis.org

0, 0, 3, 114, 969, 4773, 17415, 52125, 135375, 315675, 676200, 1352085, 2553558, 4595934, 7937874, 13229118, 21369330, 33579450, 51487425, 77229900, 113571975, 164046795, 233117313, 326362179, 450688329, 614572413, 828333870, 1104441975, 1457859900, 1906428300
Offset: 1

Views

Author

Heinrich Ludwig, Apr 05 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n^8+4*n^7-14*n^6-56*n^5+61*n^4+220*n^3-84*n^2-240*n)/384 +If[EvenQ[n],0,(6*n+3)/32],{n,1,20}] (* Vaclav Kotesovec, Apr 05 2014 after Heinrich Ludwig *)
  • PARI
    concat([0,0], Vec(-3*x^3*(x^4+31*x^3+76*x^2+31*x+1)/((x-1)^9*(x+1)^2) + O(x^100))) \\ Colin Barker, Apr 05 2014

Formula

a(n) = (n^8 + 4*n^7 - 14*n^6 - 56*n^5 + 61*n^4 + 220*n^3 - 84*n^2 - 240*n)/384 + IF(MOD(n, 2) = 1)*(6*n + 3)/32.
G.f.: -3*x^3*(x^4+31*x^3+76*x^2+31*x+1) / ((x-1)^9*(x+1)^2). - Colin Barker, Apr 05 2014

A243141 Triangle T(n, k) = Numbers of inequivalent (mod D_3) ways to place k points on a triangular grid of side n so that no three of them are vertices of an equilateral triangle of any orientation. Triangle read by rows.

Original entry on oeis.org

1, 1, 1, 2, 4, 3, 1, 3, 10, 19, 22, 7, 1, 4, 22, 75, 170, 204, 115, 18, 1, 5, 41, 218, 816, 1891, 2635, 1909, 628, 58, 3, 7, 72, 542, 2947, 10846, 26695, 41770, 39218, 19905, 4776, 437, 13, 8, 116, 1178, 8765, 46068, 171700, 444117, 776276, 876012, 601078, 229941
Offset: 1

Views

Author

Heinrich Ludwig, May 30 2014

Keywords

Comments

The triangle T(n, k) is irregularly shaped: 1 <= k <= A240114(n). First row corresponds to n = 1.
The maximal number of points that can be placed on a triangular grid of side n so that no three of them form an equilateral triangle is given by A240114(n).

Examples

			The triangle begins:
  1;
  1,  1;
  2,  4,   3,    1;
  3, 10,  19,   22,     7,     1;
  4, 22,  75,  170,   204,   115,    18,     1;
  5, 41, 218,  816,  1891,  2635,  1909,   628,    58,    3;
  7, 72, 542, 2947, 10846, 26695, 41770, 39218, 19905, 4776, 437, 13;
  ...
There is exactly T(5, 8) = 1 way to place 8 points (x) on a triangular grid of side 5 according to the definition of the sequence:
           .
          x x
         x . x
        x . . x
       x . . . x
		

Crossrefs

Cf. A240114, A240439, A001399 (column 1), A227327 (column 2), A243142 (column 3), A243143 (column 4), A243144 (column 5).

A243211 Triangle T(n, k) = Numbers of ways to place k points on a triangular grid of side n so that no three of them are vertices of an equilateral triangle with sides parallel to the grid. Triangle read by rows.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 6, 15, 15, 3, 1, 10, 45, 107, 128, 63, 10, 1, 15, 105, 428, 1062, 1566, 1276, 507, 69, 1, 21, 210, 1282, 5160, 13971, 25191, 29235, 20508, 7747, 1251, 42, 1, 1, 28, 378, 3198, 18591, 77124, 231090, 498097, 759117, 792942, 540361, 222597, 49053
Offset: 1

Views

Author

Heinrich Ludwig, Jun 09 2014

Keywords

Comments

The triangle T(n, k) is irregularly shaped: 0 <= k <= A227308(n). First row corresponds to n = 1.
The maximal number of points that can be placed on a triangular grid of side n so that no three of them form an equilateral triangle with sides parallel to the grid is given by A227308(n).

Examples

			The triangle begins:
  1,  1;
  1,  3,   3;
  1,  6,  15,   15,    3;
  1, 10,  45,  107,  128,    63,    10,
  1, 15, 105,  428, 1062,  1566,  1276,   507,    69,
  1, 21, 210, 1282, 5160, 13971, 25191, 29235, 20508, 7747, 1251, 42, 1;
  ...
There is T(6, 12) = 1 way to place 12 points (x) on the grid obeying the rule in the definition of the sequence:
           .
          x x
         x . x
        x . . x
       x . . . x
      . x x x x .
		

Crossrefs

Cf. A227308, A243207, A084546, A234251, A239567, A240439, A194136, A000217 (column 2), A050534 (column 3), A243212 (column 4), A243213 (column 5), A243214 (column 6).

A240442 Number of ways to place 5 points on a triangular grid of side n so that no three of these points are vertices of an equilateral triangle of any orientation.

Original entry on oeis.org

0, 39, 1194, 11259, 64776, 275805, 957516, 2859768, 7606821, 18444537, 41458599, 87464157, 174846963, 333687378, 611613150, 1081890447
Offset: 3

Views

Author

Heinrich Ludwig, Apr 08 2014

Keywords

Crossrefs

Formula

a(n) = (n^10 + 5*n^9 - 30*n^8 - 150*n^7)/3840 + O(n^6).

Extensions

a(16)-a(18) from Heinrich Ludwig, Apr 25 2014
Showing 1-5 of 5 results.